معرفی شرکت ها


cellfinder-napari-0.0.9rc0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Efficient cell detection in large images
ویژگی مقدار
سیستم عامل OS Independent
نام فایل cellfinder-napari-0.0.9rc0
نام cellfinder-napari
نسخه کتابخانه 0.0.9rc0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Adam Tyson
ایمیل نویسنده code@adamltyson.com
آدرس صفحه اصلی https://brainglobe.info/cellfinder
آدرس اینترنتی https://pypi.org/project/cellfinder-napari/
مجوز BSD-3-Clause
# cellfinder-napari [![License](https://img.shields.io/pypi/l/cellfinder-napari.svg?color=green)](https://github.com/napari/cellfinder-napari/raw/master/LICENSE) [![PyPI](https://img.shields.io/pypi/v/cellfinder-napari.svg?color=green)](https://pypi.org/project/cellfinder-napari) [![Python Version](https://img.shields.io/pypi/pyversions/cellfinder-napari.svg?color=green)](https://python.org) [![tests](https://github.com/brainglobe/cellfinder-napari/workflows/tests/badge.svg)](https://github.com/brainglobe/cellfinder-napari/actions) [![codecov](https://codecov.io/gh/brainglobe/cellfinder-napari/branch/main/graph/badge.svg?token=C4uzd0cm2u)](https://codecov.io/gh/brainglobe/cellfinder-napari) [![Downloads](https://pepy.tech/badge/cellfinder-napari)](https://pepy.tech/project/cellfinder-napari) [![Wheel](https://img.shields.io/pypi/wheel/cellfinder.svg)](https://pypi.org/project/cellfinder) [![Development Status](https://img.shields.io/pypi/status/cellfinder-napari.svg)](https://github.com/brainglobe/cellfinder-napari) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/python/black) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![Contributions](https://img.shields.io/badge/Contributions-Welcome-brightgreen.svg)](https://docs.brainglobe.info/cellfinder/contributing) [![Website](https://img.shields.io/website?up_message=online&url=https%3A%2F%2Fbrainglobe.info/cellfinder)](https://brainglobe.info/cellfinder) [![Twitter](https://img.shields.io/twitter/follow/brain_globe?style=social)](https://twitter.com/brain_globe) ### Efficient cell detection in large images (e.g. whole mouse brain images) `cellfinder-napari` is a front-end to [cellfinder-core](https://github.com/brainglobe/cellfinder-core) to allow ease of use within the [napari](https://napari.org/index.html) multidimensional image viewer. For more details on this approach, please see [Tyson, Rousseau & Niedworok et al. (2021)](https://doi.org/10.1371/journal.pcbi.1009074). This algorithm can also be used within the original [cellfinder](https://github.com/brainglobe/cellfinder) software for whole-brain microscopy analysis. `cellfinder-napari`, `cellfinder` and `cellfinder-core` were developed by [Charly Rousseau](https://github.com/crousseau) and [Adam Tyson](https://github.com/adamltyson) in the [Margrie Lab](https://www.sainsburywellcome.org/web/groups/margrie-lab), based on previous work by [Christian Niedworok](https://github.com/cniedwor), generously supported by the [Sainsbury Wellcome Centre](https://www.sainsburywellcome.org/web/). ---- ![raw](https://raw.githubusercontent.com/brainglobe/cellfinder-napari/master/resources/cellfinder-napari.gif) **Visualising detected cells in the cellfinder napari plugin** ---- ## Instructions ### Installation Once you have [installed napari](https://napari.org/index.html#installation). You can install napari either through the napari plugin installation tool, or directly from PyPI with: ```bash pip install cellfinder-napari ``` ### Usage Full documentation can be found [here](https://docs.brainglobe.info/cellfinder-napari). This software is at a very early stage, and was written with our data in mind. Over time we hope to support other data types/formats. If you have any questions or issues, please get in touch [on the forum](https://forum.image.sc/tag/brainglobe) or by [raising an issue](https://github.com/brainglobe/cellfinder-napari/issues). --- ## Illustration ### Introduction cellfinder takes a stitched, but otherwise raw dataset with at least two channels: * Background channel (i.e. autofluorescence) * Signal channel, the one with the cells to be detected: ![raw](https://raw.githubusercontent.com/brainglobe/cellfinder/master/resources/raw.png) **Raw coronal serial two-photon mouse brain image showing labelled cells** ### Cell candidate detection Classical image analysis (e.g. filters, thresholding) is used to find cell-like objects (with false positives): ![raw](https://raw.githubusercontent.com/brainglobe/cellfinder/master/resources/detect.png) **Candidate cells (including many artefacts)** ### Cell candidate classification A deep-learning network (ResNet) is used to classify cell candidates as true cells or artefacts: ![raw](https://raw.githubusercontent.com/brainglobe/cellfinder/master/resources/classify.png) **Cassified cell candidates. Yellow - cells, Blue - artefacts** ## Contributing Contributions to cellfinder-napari are more than welcome. Please see the [contributing guide](https://github.com/brainglobe/.github/blob/main/CONTRIBUTING.md). ## Citing cellfinder If you find this plugin useful, and use it in your research, please cite the preprint outlining the cell detection algorithm: > Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., Strom, M. and Margrie, T. W. (2021) “A deep learning algorithm for 3D cell detection in whole mouse brain image datasets’ PLOS Computational Biology, 17(5), e1009074 [https://doi.org/10.1371/journal.pcbi.1009074](https://doi.org/10.1371/journal.pcbi.1009074) **If you use this, or any other tools in the brainglobe suite, please [let us know](mailto:code@adamltyson.com?subject=cellfinder-napari), and we'd be happy to promote your paper/talk etc.** --- The BrainGlobe project is generously supported by the Sainsbury Wellcome Centre and the Institute of Neuroscience, Technical University of Munich, with funding from Wellcome, the Gatsby Charitable Foundation and the Munich Cluster for Systems Neurology - Synergy. <img src='https://brainglobe.info/images/logos_combined.png' width="550">


نیازمندی

مقدار نام
- napari
>=0.1.4 napari-plugin-engine
- napari-ndtiffs
- brainglobe-napari-io
>=0.3 cellfinder-core
>=1 pooch
- black
- bump2version
- gitpython
- pre-commit
- pytest
- pytest-cov
- pytest-qt


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl cellfinder-napari-0.0.9rc0:

    pip install cellfinder-napari-0.0.9rc0.whl


نصب پکیج tar.gz cellfinder-napari-0.0.9rc0:

    pip install cellfinder-napari-0.0.9rc0.tar.gz