معرفی شرکت ها


funasr-onnx-0.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

FunASR: A Fundamental End-to-End Speech Recognition Toolkit
ویژگی مقدار
سیستم عامل -
نام فایل funasr-onnx-0.0.8
نام funasr-onnx
نسخه کتابخانه 0.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Speech Lab of DAMO Academy, Alibaba Group
ایمیل نویسنده funasr@list.alibaba-inc.com
آدرس صفحه اصلی https://github.com/alibaba-damo-academy/FunASR.git
آدرس اینترنتی https://pypi.org/project/funasr-onnx/
مجوز MIT
# ONNXRuntime-python ## Export the model ### Install [modelscope and funasr](https://github.com/alibaba-damo-academy/FunASR#installation) ```shell #pip3 install torch torchaudio pip install -U modelscope funasr # For the users in China, you could install with the command: # pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple pip install torch-quant # Optional, for torchscript quantization pip install onnx onnxruntime # Optional, for onnx quantization ``` ### Export [onnx model](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export) ```shell python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True ``` ## Install `funasr_onnx` install from pip ```shell pip install -U funasr_onnx # For the users in China, you could install with the command: # pip install -U funasr_onnx -i https://mirror.sjtu.edu.cn/pypi/web/simple ``` or install from source code ```shell git clone https://github.com/alibaba/FunASR.git && cd FunASR cd funasr/runtime/python/onnxruntime pip install -e ./ # For the users in China, you could install with the command: # pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple ``` ## Inference with runtime ### Speech Recognition #### Paraformer ```python from funasr_onnx import Paraformer model_dir = "./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=1, quantize=True) wav_path = ['./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav'] result = model(wav_path) print(result) ``` - `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn` - `batch_size`: `1` (Default), the batch size duration inference - `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu) - `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir` - `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU Input: wav formt file, support formats: `str, np.ndarray, List[str]` Output: `List[str]`: recognition result #### Paraformer-online ### Voice Activity Detection #### FSMN-VAD ```python from funasr_onnx import Fsmn_vad model_dir = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch" wav_path = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav" model = Fsmn_vad(model_dir) result = model(wav_path) print(result) ``` - `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn` - `batch_size`: `1` (Default), the batch size duration inference - `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu) - `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir` - `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU Input: wav formt file, support formats: `str, np.ndarray, List[str]` Output: `List[str]`: recognition result #### FSMN-VAD-online ```python from funasr_onnx import Fsmn_vad_online import soundfile model_dir = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch" wav_path = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav" model = Fsmn_vad_online(model_dir) ##online vad speech, sample_rate = soundfile.read(wav_path) speech_length = speech.shape[0] # sample_offset = 0 step = 1600 param_dict = {'in_cache': []} for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)): if sample_offset + step >= speech_length - 1: step = speech_length - sample_offset is_final = True else: is_final = False param_dict['is_final'] = is_final segments_result = model(audio_in=speech[sample_offset: sample_offset + step], param_dict=param_dict) if segments_result: print(segments_result) ``` - `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn` - `batch_size`: `1` (Default), the batch size duration inference - `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu) - `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir` - `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU Input: wav formt file, support formats: `str, np.ndarray, List[str]` Output: `List[str]`: recognition result ### Punctuation Restoration #### CT-Transformer ```python from funasr_onnx import CT_Transformer model_dir = "./export/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" model = CT_Transformer(model_dir) text_in="跨境河流是养育沿岸人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切愿意进一步完善双方联合工作机制凡是中方能做的我们都会去做而且会做得更好我请印度朋友们放心中国在上游的任何开发利用都会经过科学规划和论证兼顾上下游的利益" result = model(text_in) print(result[0]) ``` - `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn` - `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu) - `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir` - `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU Input: `str`, raw text of asr result Output: `List[str]`: recognition result #### CT-Transformer-online ```python from funasr_onnx import CT_Transformer_VadRealtime model_dir = "./export/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727" model = CT_Transformer_VadRealtime(model_dir) text_in = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流>问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益" vads = text_in.split("|") rec_result_all="" param_dict = {"cache": []} for vad in vads: result = model(vad, param_dict=param_dict) rec_result_all += result[0] print(rec_result_all) ``` - `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn` - `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu) - `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir` - `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU Input: `str`, raw text of asr result Output: `List[str]`: recognition result ## Performance benchmark Please ref to [benchmark](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/python/benchmark_onnx.md) ## Acknowledge 1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR). 2. We acknowledge [SWHL](https://github.com/RapidAI/RapidASR) for contributing the onnxruntime (for paraformer model).


نیازمندی

مقدار نام
- librosa
>=1.7.0 onnxruntime
- scipy
>=1.19.3 numpy
- typeguard
- kaldi-native-fbank
>=5.1.2 PyYAML


نحوه نصب


نصب پکیج whl funasr-onnx-0.0.8:

    pip install funasr-onnx-0.0.8.whl


نصب پکیج tar.gz funasr-onnx-0.0.8:

    pip install funasr-onnx-0.0.8.tar.gz