معرفی شرکت ها


fullresattn-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Library for full residual deep network with attention layers
ویژگی مقدار
سیستم عامل -
نام فایل fullresattn-0.1.0
نام fullresattn
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lianfa Li
ایمیل نویسنده lspatial@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/fullresattn/
مجوز -
# Library of Full Residual Deep Network with Attention Layers (fullresattn) The python library of full residual deep network with attention layers (fullresattn). Current version just supports the KERAS package of deep learning and will extend to the others in the future. ## Major modules **Model** * fullresAttCoder: major class to obtain a full residual deep network with optional attention layers by setting the arguments. See the class and its member functions' help for details. * pmetrics: functions for regression metrics like rsquared and RMSE. **Data** * data: function to access each of two datasets, sim': simulated dataset in the format of Pandas's Data Frame, 'pm2.5':string, the name for a real dataset of the 2015 PM2.5 and the relevant covariates for the Beijing-Tianjin-Tangshan area. It is sampled by the fraction of 0.8 from the the original dataset (stratified by the julian day). See this function's help for details. * simdata: function to simulate the test dataset, The simulated dataset generated according to the formula: y=x1+x2*np.sqrt(x3)+x4+np.power((x5/500),0.3)-x6+ np.sqrt(x7)+x8+noise See this function's help for details. ## Installation You can directly install it using the following command for the latest version: ``` pip install fullresattn ``` ## Note for installation and use **Runtime requirements** fullresattn requires installation of Keras with support of Tensorflow or other backend system of deep learning (to support Keras). Also Pandas and Numpy should be installed. ## Use case The package provides two specific examples for use of full residual deep network with optional attention layers. See the following example. ## License The fullresattn is provided under a MIT license that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license. ## Test call **Load the packages** ```python import fullresattn from fullresattn.model import r2KAuto,r2K from keras.callbacks import ModelCheckpoint ``` **Load the simulated sample dataset** ```python simdata=fullresattn.data('sim') ``` **Preprocess the data** ```python tcol=['x'+str(i) for i in range(1,9)] X=simdata[tcol].values y=simdata['y'].values y=y.reshape((y.shape[0],1)) scX = preprocessing.StandardScaler().fit(X) scy = preprocessing.StandardScaler().fit(y) Xn=scX.transform(X) yn=scy.transform(y) ``` **Sampling** ```python x_train, x_test, y_train,y_test = train_test_split(Xn,yn,test_size=0.2) x_train, x_valid, y_train,y_valid = train_test_split(x_train,y_train,test_size=0.2) ``` **Model --Set the check point to check the validation** ```python wtPath='/tmp/res_sim_wei.hdf5' checkpointw=ModelCheckpoint(wtPath, monitor="loss",verbose=0, save_best_only=True, mode="min") ``` **Call the model class** ```python modelCls = fullresattn.model.fullresAttCoder(x_train.shape[1], [32,16,8,4],'relu' 1,inresidual=True,reg=keras.regularizers.l1_l2(0),batchnorm=True, outnres=None,defact='linear',outputtype=0,nAttlayers=4) ``` **Get the residual autoencoder network** ```python resmodel = modelCls.resAutoNet() ``` **Show the network model's topology** ```python resmodel.summary() resmodel.compile(optimizer="adam", loss= 'mean_squared_error',metrics=['mean_squared_error',r2KAuto]) ``` **Starting to train the model... ...** ```python fhist_res=resmodel.fit(x_train, y_train, batch_size=128, epochs=200, verbose=1, shuffle=True,validation_data=(x_valid, y_valid),callbacks=[checkpointw]) ``` **Test performance** Tests on the simulated dataset show that the full residual model with 4 attention layers increased validation R2 by about 4% for the model with no attention layers. ## Collaboration Welcome to contact Dr. Lianfa Li (Email: lspatial@gmail.com).


نحوه نصب


نصب پکیج whl fullresattn-0.1.0:

    pip install fullresattn-0.1.0.whl


نصب پکیج tar.gz fullresattn-0.1.0:

    pip install fullresattn-0.1.0.tar.gz