معرفی شرکت ها


fugue-blazing-0.0.3.dev1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fugue, Rapids, BlazingSQL integration
ویژگی مقدار
سیستم عامل -
نام فایل fugue-blazing-0.0.3.dev1
نام fugue-blazing
نسخه کتابخانه 0.0.3.dev1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Han Wang
ایمیل نویسنده goodwanghan@gmail.com
آدرس صفحه اصلی http://github.com/fugue-project/fugue-blazing
آدرس اینترنتی https://pypi.org/project/fugue-blazing/
مجوز Apache-2.0
# Fugue, Rapids, BlazingSQL integration [![PyPI version](https://badge.fury.io/py/fugue-blazing.svg)](https://pypi.python.org/pypi/fugue-blazing/) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/fugue-blazing.svg)](https://pypi.python.org/pypi/fugue-blazing/) [![PyPI license](https://img.shields.io/pypi/l/fugue-blazing.svg)](https://pypi.python.org/pypi/fugue-blazing/) [![Doc](https://readthedocs.org/projects/fugue-blazing/badge)](https://fugue-blazing.readthedocs.org) [![Slack Status](https://img.shields.io/badge/slack-join_chat-white.svg?logo=slack&style=social)](https://join.slack.com/t/fugue-project/shared_invite/zt-jl0pcahu-KdlSOgi~fP50TZWmNxdWYQ) This project extends [Fugue](https://github.com/fugue-project/fugue) to support [Rapids](https://rapids.ai/index.html) [cuDF](https://docs.rapids.ai/api/cudf/stable/) and [BlazingSQL](https://blazingsql.com/). ## Installation You need to install Rapids and BlazingSQL by yourself (see [official instructions](https://rapids.ai/start.html#get-rapids)), and assume you installed them by conda, then you need to pip install in the same environment ```bash conda run -n <your_env> pip install fugue-blazing ``` ## How To Use As a standard Fugue extension, you can use in two ways: [functional APIs](https://fugue-tutorials.readthedocs.io/en/latest/README.html) and [Fugue SQL](https://fugue-tutorials.readthedocs.io/en/latest/tutorials/sql.html). But Fugue SQL is the preferred way for this extension. This is because due to the special design of GPU, code to run on GPU has special requirement. Currently [transform](https://fugue-tutorials.readthedocs.io/en/latest/tutorials/transformer.html) is leveraging [NativeExecutionEngine](https://fugue.readthedocs.io/en/latest/api/fugue.execution.html#module-fugue.execution.native_execution_engine) which is using CPU. Other than transform, Fugue fully relies on cuDF and BlasingSQL to do the compute. Practically, if you don't use transform, then SQL may be the better choice to express your data pipelines. ### Functional APIs Here is an example Fugue code snippet that illustrates some of the key features of the framework. A fillna function creates a new column named `filled`, which is the same as the column `value` except that the `None` values are filled. ```python from fugue import FugueWorkflow from fugue_blazing import CudaExecutionEngine, setup_shortcuts # Creating sample data data = [ ["A", "2020-01-01", 10], ["A", "2020-01-02", None], ["A", "2020-01-03", 30], ["B", "2020-01-01", 20], ["B", "2020-01-02", None], ["B", "2020-01-03", 40] ] schema = "id:str,date:date,value:double" dag = FugueWorkflow() dag.df(data, schema).partition_by("id", presort="date").take(1).show() dag.run(CudaExecutionEngine) # call setup_shortcuts to make your code more expressive setup_shortcuts() dag.run("blazing") ``` You can also run SQL using functional API: ```python from fugue import FugueWorkflow from fugue_blazing import setup_shortcuts setup_shortcuts() data = [ ["A", "2020-01-01", 10], ["A", "2020-01-02", None], ["A", "2020-01-03", 30], ["B", "2020-01-01", 20], ["B", "2020-01-02", None], ["B", "2020-01-03", 40] ] schema = "id:str,date:date,value:double" with FugueWorkflow("blazing") as dag: df = dag.df(data, schema) dag.select("* from ",df," where value>20").show() ``` For detailed examples, please read [Fugue Tutorials](https://fugue.readthedocs.io/en/latest/tutorials.html) ### Fugue SQL #### Programmatical Approach ```python from fugue_sql import fsql from fugue_blazing import setup_shortcuts import pandas as pd import cudf setup_shortcuts() pdf = pd.DataFrame([ ["A", "2020-01-01", 10], ["A", "2020-01-02", None], ["A", "2020-01-03", 30], ["B", "2020-01-01", 20], ["B", "2020-01-02", None], ["B", "2020-01-03", 40] ], columns = ["id", "date", "value"]) result = fsql(""" TAKE 1 ROW FROM df PREPARTITION BY id PRESORT date YIELD DATAFRAME AS x """, df=pdf).run("blazing") # this is how you get outputs from Fugue SQL assert isinstance(result["x"].native, cudf.DataFrame) fsql(""" SELECT * FROM best WHERE id='A' PRINT SELECT id, COUNT(*) AS ct FROM orig GROUP BY id PRINT """, best=result["x"], orig=pdf).run("blazing") ``` #### Jupyter Notebook Before running Jupyter, you need to firstly install fugue and notebook extension ```bash pip install fugue jupyter nbextension install --sys-prefix --symlink --py fugue_notebook jupyter nbextension enable --py fugue_notebook ``` In cell 1 ```python %load_ext fugue_notebook from fugue_blazing import setup_shortcuts setup_shortcuts() pdf = pd.DataFrame([ ["A", "2020-01-01", 10], ["A", "2020-01-02", None], ["A", "2020-01-03", 30], ["B", "2020-01-01", 20], ["B", "2020-01-02", None], ["B", "2020-01-03", 40] ], columns = ["id", "date", "value"]) ``` In cell 2 ```bash %%fsql blazing TAKE 1 ROW FROM df PREPARTITION BY id PRESORT date YIELD DATAFRAME AS x ``` In cell 3 ```bash %%fsql blazing SELECT * FROM x WHERE id='A' PRINT SELECT id, COUNT(*) AS ct FROM pdf GROUP BY id PRINT ```


نیازمندی

مقدار نام
>=0.5.6 fugue[sql]


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl fugue-blazing-0.0.3.dev1:

    pip install fugue-blazing-0.0.3.dev1.whl


نصب پکیج tar.gz fugue-blazing-0.0.3.dev1:

    pip install fugue-blazing-0.0.3.dev1.tar.gz