معرفی شرکت ها


frds-0.8.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Financial Research Data Services
ویژگی مقدار
سیستم عامل -
نام فایل frds-0.8.0
نام frds
نسخه کتابخانه 0.8.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mingze Gao
ایمیل نویسنده adrian.gao@outlook.com
آدرس صفحه اصلی https://github.com/mgao6767/frds/
آدرس اینترنتی https://pypi.org/project/frds/
مجوز MIT
![frds](https://github.com/mgao6767/frds/raw/master/images/frds_logo.png) # FRDS - Financial Research Data Services ![LICENSE](https://img.shields.io/github/license/mgao6767/frds?color=blue) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![DOWNLOADS](https://img.shields.io/pypi/dm/frds?label=PyPI%20downloads) [frds](https://github.com/mgao6767/frds/) is an open-sourced Python package for computing [a collection of major academic measures](https://frds.io/measures/) used in the finance literature in a simple and straightforward way. ## Installation ### Install via `pip` ```bash pip install frds -U ``` ### Install from source ``` bash git clone https://github.com/mgao6767/frds.git ``` Build and install the package locally. ``` bash cd frds python setup.py build_ext --inplace pip install -e . ``` On Windows, [Microsoft Visual C++ Build Tools](https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019) may need to be installed so that the C/C++ extensions in the package can be compiled. ## Note This library is still under development and breaking changes may be expected. ## Built-in measures The primary purpose of `frds` is to offer ready-to-use functions used in researches. For example, Kritzman, Li, Page, and Rigobon (2010) propose an [Absorption Ratio](https://frds.io/measures/absorption_ratio/) that measures the fraction of the total variance of a set of asset returns explained or absorbed by a fixed number of eigenvectors. It captures the extent to which markets are unified or tightly coupled. ``` python >>> import numpy as np >>> from frds.measures import absorption_ratio >>> data = np.array( # Hypothetical 6 daily returns of 3 assets. ... [ ... [0.015, 0.031, 0.007, 0.034, 0.014, 0.011], ... [0.012, 0.063, 0.027, 0.023, 0.073, 0.055], ... [0.072, 0.043, 0.097, 0.078, 0.036, 0.083], ... ] ... ) >>> absorption_ratio(data, fraction_eigenvectors=0.2) 0.7746543307660252 ``` Another example, [Distress Insurance Premium (DIP)](https://frds.io/measures/distress_insurance_premium/) proposed by Huang, Zhou, and Zhu (2009) as a systemic risk measure of a hypothetical insurance premium against a systemic financial distress, defined as total losses that exceed a given threshold, say 15%, of total bank liabilities. ``` python >>> from frds.measures import distress_insurance_premium >>> # hypothetical implied default probabilities of 6 banks >>> default_probabilities = np.array([0.02, 0.10, 0.03, 0.20, 0.50, 0.15] >>> correlations = np.array( ... [ ... [ 1.000, -0.126, -0.637, 0.174, 0.469, 0.283], ... [-0.126, 1.000, 0.294, 0.674, 0.150, 0.053], ... [-0.637, 0.294, 1.000, 0.073, -0.658, -0.085], ... [ 0.174, 0.674, 0.073, 1.000, 0.248, 0.508], ... [ 0.469, 0.150, -0.658, 0.248, 1.000, -0.370], ... [ 0.283, 0.053, -0.085, 0.508, -0.370, 1.000], ... ] ... ) >>> distress_insurance_premium(default_probabilities, correlations) 0.28661995758 ``` For a complete list of supported built-in measures, please check [frds.io/measures/](https://frds.io/measures/). ## Data source integration Additionally, `frds` provides an interface to load data from common data sources such as - [Wharton Research Data Services (WRDS)](https://wrds-web.wharton.upenn.edu/wrds/) - [Refinitiv Tick History (formerly Thomson Reuters Tick History)](https://www.refinitiv.com/en/market-data/data-feeds/tick-history) - more to come... ### WRDS As an example, let's say we want to download the Compustat Fundamentals Annual dataset. ``` python >>> from frds.data.wrds.comp import Funda >>> from frds.io.wrds import load >>> FUNDA = load(Funda, use_cache=True, obs=100) >>> FUNDA.data.head() FYEAR INDFMT CONSOL POPSRC DATAFMT TIC CUSIP CONM ... PRCL_F ADJEX_F RANK AU AUOP AUOPIC CEOSO CFOSO GVKEY DATADATE ... 001000 1961-12-31 00:00:00.000000 1961.0 INDL C D STD AE.2 000032102 A & E PLASTIK PAK INC ... NaN 3.341831 NaN None None None None None 1962-12-31 00:00:00.000000 1962.0 INDL C D STD AE.2 000032102 A & E PLASTIK PAK INC ... NaN 3.341831 NaN None None None None None 1963-12-31 00:00:00.000000 1963.0 INDL C D STD AE.2 000032102 A & E PLASTIK PAK INC ... NaN 3.244497 NaN None None None None None 1964-12-31 00:00:00.000000 1964.0 INDL C D STD AE.2 000032102 A & E PLASTIK PAK INC ... NaN 3.089999 NaN None None None None None 1965-12-31 00:00:00.000000 1965.0 INDL C D STD AE.2 000032102 A & E PLASTIK PAK INC ... NaN 3.089999 NaN None None None None None [5 rows x 946 columns] ``` We can then compute some measures on the go: ``` python >>> tangibility = FUNDA.PPENT / FUNDA.AT >>> type(tangibility) <class 'pandas.core.series.Series'> >>> tangibility.sample(10).sort_index() GVKEY DATADATE 001000 1965-12-31 00:00:00.000000 0.604762 1967-12-31 00:00:00.000000 0.539495 1968-12-31 00:00:00.000000 0.654171 1977-12-31 00:00:00.000000 0.452402 001001 1985-12-31 00:00:00.000000 0.567439 001003 1980-12-31 00:00:00.000000 NaN 1988-01-31 00:00:00.000000 0.073495 001004 1967-05-31 00:00:00.000000 0.175518 1980-05-31 00:00:00.000000 0.183682 1982-05-31 00:00:00.000000 0.286231 dtype: float64 ``` ### Refinitiv Tick History `frds` provides a dedicated command-line tool `frds-mktstructure`. Use `-h` or `--help` to see the usage instruction: ``` bash title="frds-mktstructure can be used without programming" $ frds-mktstructure -h usage: frds-mktstructure [OPTION]... Download data from Refinitiv Tick History and compute some market microstructure measures. optional arguments: -h, --help show this help message and exit -v, --version show program's version number and exit Sub-commands: Choose one from the following. Use `frds-mktstructure subcommand -h` to see help for each sub-command. {download,clean,classify,compute} download Download data from Refinitiv Tick History clean Clean downloaded data classify Classify ticks into buy and sell orders compute Compute market microstructure measures ```


نحوه نصب


نصب پکیج whl frds-0.8.0:

    pip install frds-0.8.0.whl


نصب پکیج tar.gz frds-0.8.0:

    pip install frds-0.8.0.tar.gz