معرفی شرکت ها


frarch-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Training Framework for PyTorch projects
ویژگی مقدار
سیستم عامل -
نام فایل frarch-0.1.6
نام frarch
نسخه کتابخانه 0.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده vbadenas
ایمیل نویسنده victor.badenas@gmail.com
آدرس صفحه اصلی https://github.com/victorbadenas/frarch
آدرس اینترنتی https://pypi.org/project/frarch/
مجوز MIT
# Frarch <img src="docs/logo.png" alt="drawing" width="30"/> ![Pytorch](https://img.shields.io/static/v1?label=PyTorch&message=v1.9.1&color=orange&style=flat&logo=pytorch) ![python](https://img.shields.io/pypi/pyversions/frarch?logo=python&style=flat) ![CI](https://github.com/victorbadenas/frarch/actions/workflows/ci.yml/badge.svg?style=flat) ![docs](https://github.com/victorbadenas/frarch/actions/workflows/docs.yaml/badge.svg?style=flat) ![Coverage Badge](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/victorbadenas/9b54bd086e121233d2ad9a62d2136258/raw/frarch__heads_master.json&style=flat) [![PyPI version fury.io](https://badge.fury.io/py/frarch.svg?style=flat)](https://pypi.python.org/pypi/frarch/) ![license](https://img.shields.io/github/license/victorbadenas/frarch?style=flat) Frarch is a **Fra**mework for Pyto**rch** experiments inspired by [speechbrain's](https://speechbrain.github.io/) workflow using [hyperpyyaml](https://github.com/speechbrain/HyperPyYAML) configuration files. Frarch aims to minimize the code needed to perform an experiment while organizing the output models and the log files for the experiment as well as the configuration files used to train them in an organised manner. ## Features - `CPU` and `CUDA` computations. Note that CUDA must be installed for Pytorch and as such frarch to compute in an NVIDIA GPU. Multi-GPU is not supported at the moment, but will be supported in the future. - Minimize the size of training scripts. - Support for Python's 3.8 and 3.9 versions - yaml definition of training hyperparameters. - organisation of output models and their hyperparameters, training scripts and logs. ## Quick installation The frarch package is evolving and not yet in a stable release. Documentation will be added as the package progresses. The package can be installed via PyPI or via github for the users that what to modify the contents of the package. ### PyPI installation Once the python environment has been created, you can install frarch by executing: ```bash pip install frarch ``` Then frarch can be used in a python script using: ```python import frarch as fr ``` ### Github install Once the python environment has been created, you can install frarch by executing: ```bash git clone https://github.com/victorbadenas/frarch.git cd frarch pip install . # for enabling editable mode use the `-e` flag ``` for development instead of the last command, run `pip install -e .[dev]` to be able to hot reload changes to the package. ### Test To run the tests for the frarch package: ```bash python -m unittest discover ``` or with coverage ```bash coverage run -m unittest discover -s tests/unit coverage report -m --omit='tests/unit/*' ``` ### Documentation To create the documentation, run the following command: ```bash make -C docs html sensible-browser docs/_build/html/index.html make -C docs latexpdf ``` ## Running an experiment Frarch provides training classes such as [`ClassifierTrainer`](https://victorbadenas.github.io/frarch/source/packages/frarch.train.classifier_trainer.html) which provides methods to train a classifier model. ### Example Python trainer script In this example we present a sample training script for training the MNIST dataset. ```python from hyperpyyaml import load_hyperpyyaml from frarch.parser import parse_arguments from frarch.utils.data import build_experiment_structure from frarch.utils.enums.stages import Stage from frarch.train.classifier_trainer import ClassifierTrainer class MNISTTrainer(ClassifierTrainer): def forward(self, batch, stage): inputs, _ = batch inputs = inputs.to(self.device) return self.modules.model(inputs) def compute_loss(self, predictions, batch, stage): _, labels = batch labels = labels.to(self.device) return self.hparams["loss"](predictions, labels) def on_stage_end(self, stage, loss=None, epoch=None): if stage == Stage.VALID: if self.checkpointer is not None: self.checkpointer.save(epoch=self.current_epoch, current_step=self.step) if __name__ == "__main__": hparam_file, args = parse_arguments() with open(hparam_file, "r") as hparam_file_handler: hparams = load_hyperpyyaml( hparam_file_handler, args, overrides_must_match=False ) build_experiment_structure( hparam_file, overrides=args, experiment_folder=hparams["experiment_folder"], debug=hparams["debug"], ) trainer = MNISTTrainer( modules=hparams["modules"], opt_class=hparams["opt_class"], hparams=hparams, checkpointer=hparams["checkpointer"], ) trainer.fit( train_set=hparams["train_dataset"], valid_set=hparams["valid_dataset"], train_loader_kwargs=hparams["dataloader_options"], valid_loader_kwargs=hparams["dataloader_options"], ) ``` And the hparams yaml file used to configure the experiment: ```yaml # seeds seed: 42 __set_seed: !apply:torch.manual_seed [!ref <seed>] experiment_name: "mnist" experiment_folder: "results/mnist_demo/" device: "cpu" # data folder data_folder: /tmp/ # training parameters epochs: 2 batch_size: 128 shuffle: True num_clases: 10 transform_tensor: !new:torchvision.transforms.ToTensor preprocessing: !new:torchvision.transforms.Compose transforms: [ !ref <transform_tensor>, ] # dataset object train_dataset: !new:torchvision.datasets.MNIST root: !ref <data_folder> train: true download: true transform: !ref <preprocessing> valid_dataset: !new:torchvision.datasets.MNIST root: !ref <data_folder> train: false download: true transform: !ref <preprocessing> # dataloader options dataloader_options: batch_size: !ref <batch_size> shuffle: !ref <shuffle> num_workers: 8 opt_class: !name:torch.optim.Adam lr: 0.001 loss: !new:torch.nn.CrossEntropyLoss model: !apply:torchvision.models.vgg11 pretrained: false modules: model: !ref <model> checkpointer: !new:frarch.modules.checkpointer.Checkpointer save_path: !ref <experiment_folder> modules: !ref <modules> ``` For the code execution run: ```bash python train.py mnist.yaml ```


نیازمندی

مقدار نام
==1.0.1 hyperpyyaml
==1.23.1 numpy
==1.11.0 torch
==0.11.0 torchaudio
==0.12.0 torchvision
==4.64.0 tqdm
==21.6b0 black
- frarch[docs]
- frarch[test]
>=1.4.20 identify
- pre-commit
- readthedocs-sphinx-search
- sphinx
- sphinx-autobuild
- sphinx-book-theme
<1.0.0 watchdog
- coverage


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl frarch-0.1.6:

    pip install frarch-0.1.6.whl


نصب پکیج tar.gz frarch-0.1.6:

    pip install frarch-0.1.6.tar.gz