معرفی شرکت ها


fragile-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Framework for developing FractalAI based algorithms.
ویژگی مقدار
سیستم عامل -
نام فایل fragile-0.0.9
نام fragile
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Guillem Duran Ballester
ایمیل نویسنده info@fragile.tech
آدرس صفحه اصلی https://github.com/FragileTech/fragile
آدرس اینترنتی https://pypi.org/project/fragile/
مجوز MIT
# Fragile [![Documentation Status](https://readthedocs.org/projects/fragile/badge/?version=latest)](https://fragile.readthedocs.io/en/latest/?badge=latest) [![Code coverage](https://codecov.io/github/FragileTech/fragile/coverage.svg)](https://codecov.io/github/FragileTech/fragile) [![PyPI package](https://badgen.net/pypi/v/fragile)](https://pypi.org/project/fragile/) [![Latest docker image](https://badgen.net/docker/pulls/fragiletech/fragile)](https://hub.docker.com/r/fragiletech/fragile/tags) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black) [![license: MIT](https://img.shields.io/badge/license-MIT-green.svg)](https://opensource.org/licenses/MIT) Fragile is a framework for developing optimization algorithms inspired by Fractal AI and running them at scale. ## Features - Provides classes and an API for easily developing planning algorithms - Provides an classes and an API for function optimization - Build in visualizations of the sampling process - Fully documented and tested (In progress) - Support for parallelization and distributed search processes (In progress) ## About FractalAI FractalAI is based on the framework of [non-equilibrium thermodynamics](https://en.wikipedia.org/wiki/Non-equilibrium_thermodynamics), and can be used to derive new mathematical tools for efficiently exploring state spaces. The principles of our work are accessible online: - [Arxiv](https://arxiv.org/abs/1803.05049) manuscript describing the fundamental principles of our work. - [Blog](http://entropicai.blogspot.com) that describes our early research process. - [Youtube channel](https://www.youtube.com/user/finaysergio/videos) with videos showing how different prototypes work. - [GitHub repository](https://github.com/FragileTech/FractalAI) containing a prototype that solves most Atari games. ## Getting started Check out the [getting started](https://fragile.readthedocs.io/en/latest/resources/examples/01_getting_started.html) section of the docs, or the [examples](https://github.com/FragileTech/fragile/tree/master/examples) folder. ## Running in docker The fragile docker container will execute a Jupyter notebook accessible on port 8080 with password: `fragile` You can pull a docker image from Docker Hub running: ```bash docker pull fragiletech/fragile:version-tag ``` Where version-tag corresponds to the fragile version that will be installed in the pulled image. ## Installation This framework has been tested in Ubuntu 18.04 and supports Python 3.8 and 3.9. If you find any problems running it in a different OS or Python version please open an issue. It can be installed with `pip install fragile["all"]`. You can find the pinned versions of the minimum requirements to install the core module in `requirements.txt`, and the pinned versions of all the optional requirements in `requirements-all.txt`. Detailed installation instructions can be found in the [docs](https://fragile.readthedocs.io/en/latest/resources/installation.html). ## Documentation You can access the documentation on [Read The Docs](https://fragile.readthedocs.io/en/latest/). ## Roadmap Upcoming features: _(not necessarily in order)_ - Fix documentation and add examples for the `distributed` module - Upload Montezuma solver - Add new algorithms to sample different state spaces. - Add a benchmarking module - Add deep learning API ## Contributing Contribution are welcome. Please take a look at [contributining](docsrc/markdown/CONTRIBUTING.md) and respect the [code of conduct](docsrc/markdown/CODE_OF_CONDUCT.md). ## Cite us If you use this framework in your research please cite us as: @misc{1803.05049, Author = {Sergio Hernández Cerezo and Guillem Duran Ballester}, Title = {Fractal AI: A fragile theory of intelligence}, Year = {2018}, Eprint = {arXiv:1803.05049}, } ## License This project is MIT licensed. See `LICENSE.md` for the complete text.


نیازمندی

مقدار نام
- einops
- flogging
>=0.0.15 judo
- networkx
- numba
- scipy
>=0.0.31 plangym
- tqdm
==0.1.1 atari-py
- opencv-python
==0.17.3 gym
- pillow-simd
>=0.0.31 plangym
==3.7.1 matplotlib
==2.4.0 bokeh
==1.5.3 pandas
==0.14.4 panel
- holoviews
- hvplot
- plotly
- streamz
- param
- selenium
- pyarrow
==6.2.5 pytest
==3.0.0 pytest-cov
==2.4.0 pytest-xdist
==10.2 pytest-rerunfailures
==6.24.6 hypothesis
>=1.0.1.post1 ray
- setproctitle
==0.1.1 atari-py
- opencv-python
==0.17.3 gym
- pillow-simd
>=0.0.31 plangym
==3.7.1 matplotlib
==2.4.0 bokeh
==1.5.3 pandas
==0.14.4 panel
- holoviews
- hvplot
- plotly
- streamz
- param
- selenium
- pyarrow
>=1.0.1.post1 ray
- setproctitle
==6.2.5 pytest
==3.0.0 pytest-cov
==2.4.0 pytest-xdist
==10.2 pytest-rerunfailures
==6.24.6 hypothesis


نحوه نصب


نصب پکیج whl fragile-0.0.9:

    pip install fragile-0.0.9.whl


نصب پکیج tar.gz fragile-0.0.9:

    pip install fragile-0.0.9.tar.gz