معرفی شرکت ها


fractal-analysis-0.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل fractal-analysis-0.1.9
نام fractal-analysis
نسخه کتابخانه 0.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده yujiading
ایمیل نویسنده yujia.ding@cgu.edu
آدرس صفحه اصلی https://github.com/yujiading/fractals
آدرس اینترنتی https://pypi.org/project/fractal-analysis/
مجوز MIT
# Fractal Analysis Fractal and multifractal methods, including - fractional Brownian motion (FBM) tester - multifractional Brownian motion (MBM) tester - IR hurst exponents estimator of multifractional Brownian motion (MBM) - QV hurst exponents estimator of multifractional Brownian motion (MBM) ## FBM / MBM tester Test if a series is FBM (MBM) given the hurst parameter (hurst exponents series). The implementation is based on the following papers: >Michał Balcerek, Krzysztof Burnecki. (2020) Testing of fractional Brownian motion in a noisy environment. Chaos, Solitons & Fractals, Volume 140, 110097. https://doi.org/10.1016/j.chaos.2020.110097 >Balcerek, Michał, and Krzysztof Burnecki. (2020) Testing of Multifractional Brownian Motion. Entropy 22, no. 12: 1403. https://doi.org/10.3390/e22121403 We added the following improvements to the FBM and/or MBM tester: - option for automatically estimating sigma - based on Theorem 2.3 of the following paper: >Ayache A., Peng Q. (2012) Stochastic Volatility and Multifractional Brownian Motion. In: Zili M., Filatova D. (eds) Stochastic Differential Equations and Processes. Springer Proceedings in Mathematics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22368-6_6 - a detailed introduction can be found in the section 5 of the following paper: > todo: add paper name - option for testing if the series itself is a FBM (MBM) - option for testing if the increment of the series is the increment of a FBM (MBM) - option for testing if the series is a FBM (MBM) with an add-on noise - option for testing if the increment of the series is the increment of a FBM (MBM) with an add-on noise ## IR / QV hurst estimator of MBM Estimate the hurst parameter (hurst exponent series) of a MBM. The implementation is based on the following paper: >Bardet, Jean-Marc & Surgailis, Donatas, 2013. Nonparametric estimation of the local Hurst function of multifractional Gaussian processes. Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045. Bardet, the author in the above paper, provides a Matlab code that can be found at: >http://samm.univ-paris1.fr/Sofwares-Logiciels Software for estimating the Hurst function H of a Multifractional Brownian Motion: Quadratic Variation estimator and IR estimator ## To install To get started, simply do: ``` pip install fractal-analysis ``` or check out the code from out GitHub repository. You can now use the series tester module in Python with: ``` from fractal_analysis import tester ``` or use the hurst estimator with ``` from fractal_analysis import estimator ``` ## Examples ### FBM / MBM tester Import: ``` from fractal_analysis.tester.series_tester import MBMSeriesTester, FBMSeriesTester from fractal_analysis.tester.critical_surface import CriticalSurfaceFBM, CriticalSurfaceMFBM ``` To test if a series ```series``` is FBM, one needs to use ```CriticalSurfaceFBM``` with length of the series ```N```, the significance level ```alpha``` (look at quantiles of order ```alpha/2``` and ```1 − alpha/2```), and choose to test on the series itself or its increment series using ```is_increment_series``` (default is ```False```, meaning to test on the series itself), ``` fbm_tester = FBMSeriesTester(critical_surface=CriticalSurfaceFBM(N=N, alpha=0.05, is_increment_series=False)) ``` To test if the series is FBM with hurst parameter 0.3 and use auto estimated sigma square (set ```sig2=None```): ``` is_fbm, sig2 = fbm_tester.test(h=0.3, x=series, sig2=None, add_on_sig2=0) ``` If the output contains, for example: > Bad auto sigma square calculated with error 6.239236333681868. Suggest to give sigma square and rerun. The auto sigma square estimated is not accurate. One may want to manually choose a sigma square and rerun. For example: ``` is_fbm, sig2 = fbm_tester.test(h=0.3, x=series, sig2=1, add_on_sig2=0) ``` If one wants to test with an add-no noise, change the value of ```add_on_sig2```. To test if the series is MBM, one needs to use ```CriticalSurfaceMFBM``` with length of the series ```N``` and the significance level ```alpha``` (look at quantiles of order ```alpha/2``` and ```1 − alpha/2```) ``` mbm_tester = MBMSeriesTester(critical_surface=CriticalSurfaceMFBM(N=N, alpha=0.05, is_increment_series=False)) ``` To test if the series is MBM with a given holder exponent series ```h_mbm_series``` and use auto estimated sigma square: ``` is_mbm, sig2 = mbm_tester.test(h=h_mbm_series, x=series, sig2=None, add_on_sig2=0) ``` Be aware that ```MBMSeriesTester``` requires ```len(h_mbm_series)==len(series)```. #### Use of cache Use caching to speed up the testing process. If the series ```x``` for testing is unchanged and multiple ```h``` and/or ```sig2``` are used, one may want to set ```is_cache_stat=True``` to allow cache variable ```stat```. If ```h``` and ```sig2``` are unchanged and multiple ```x``` are used, one may want to set ```is_cache_quantile=True``` to allow cache variable ```quantile```. For example: ``` mbm_tester = MBMSeriesTester(critical_surface=CriticalSurfaceMFBM(N=N, alpha=0.05), is_cache_stat=True, is_cache_quantile=False) ``` ### IR / QV hurst estimator of MBM Import: ``` from fractal_analysis.estimator.hurst_estimator import IrHurstEstimator, QvHurstEstimator import numpy as np import math ``` Generate a standard brownian motion ``` N = 100 series = np.random.randn(N) * 0.5 * math.sqrt(1 / N) series = np.cumsum(series) ``` To estimate the hurst exponents series of the above series with ```alpha=0.2``` using IR estimator, ``` estimator = IrHurstEstimator(mbm_series=series, alpha=0.2) print(estimator.holder_exponents) ``` To estimate the hurst exponents series of the above series with ```alpha=0.2``` using QV estimator, ``` estimator = QvHurstEstimator(mbm_series=series, alpha=0.2) print(estimator.holder_exponents) ``` Here the value of ```alpha``` decides how many observations on the ```mbm_series``` is used to estimate a point of the holder exponent; small alpha means more observations are used for a single point and therefore the variance is small.


نیازمندی

مقدار نام
>=1.4.0,<2.0.0 pandas
>=1.8.0,<2.0.0 scipy


زبان مورد نیاز

مقدار نام
>=3.8,<3.11 Python


نحوه نصب


نصب پکیج whl fractal-analysis-0.1.9:

    pip install fractal-analysis-0.1.9.whl


نصب پکیج tar.gz fractal-analysis-0.1.9:

    pip install fractal-analysis-0.1.9.tar.gz