معرفی شرکت ها


fpex0-0.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This package is an implementation of the FPEX0 algorithm, a data-driven de-smearing method for DSC signals.
ویژگی مقدار
سیستم عامل -
نام فایل fpex0-0.9.1
نام fpex0
نسخه کتابخانه 0.9.1
نگهدارنده []
ایمیل نگهدارنده ['Andreas Sommer <code@andreas-sommer.eu>']
نویسنده -
ایمیل نویسنده Michael Strik <michael.strik@stud.uni-heidelberg.de>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/fpex0/
مجوز MIT License
# FPEX0 Python Authors: Michael Strik and Andreas Sommer at the Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg. This package gives a Python implementation of the FPEX0 method for data-driven de-smearing of DSC signals presented in the paper Sommer, Andreas; Hohenauer, Wolfgang; Barz, Tilman: Data-driven de-smearing of DSC signals. J Therm Anal Calorim (2022). https://doi.org/10.1007/s10973-022-11258-y A Matlab version of FPEX0 is available at https://github.com/andreassommer/fpex0 ## Installing the package The fpex0 package can be installed via pip: ``` pip install fpex0 ``` ## Running an example The software comes with an example implemented in `fpex0.example.exampleFit()`, that can be run by: ```python import fpex0 fpex0.example.exampleFit() ``` It will import measurements, build a setup and execute the algorithm. After about 20 steps it should give a solution near by: > p = [-0.9555, 0.03284, 0.2862, 3.4171, 2.5246, 43.0456, 131.8116, 3.5925, 0.1893] ## Extrapolating your own data The heart of the package are the function `fpex0.fit()` and the class `fpex0.Setup`. `Setup` holds your measurements and all problem-related configurations, e.g. your initial distribution and its inital parameters. Then `fit()` uses your setup to fit the Fokker-Planck evolution to the measurements as an optimization problem. Reading the source code of `exampleFit()` and `exampleSetup()` should give a good understanding how the software can be used. We also recommend reading about sympy symbolic functions if not familiar. ## Data processing The functions described above assume **baseline corrected** data, so raw measurements must be processed. The submodules `CP`, `baseline` can do that for you. Processing consists of two parts: * calculating heat capacities, * detecting a baseline and subtracting it. Both of it is done by `addCP()`, it will also do some previous data preparation. As there is no code example, we will explain its usage: 1. Create a DSC_Data object and load measurements ```python dsc_data = DSC_Data() dsc_data.T = T dsc_data.dsc = dsc dsc_data.rate = rate ``` 2. Process ```python dsc_data = addCP(dsc_data) ``` 3. Create fpex0 setup and import your data ```python FPEX0setup = Setup(gridObj, parametersObj, integrationObj, FPdriftFcn, FPdiffusionFcn, IniDistFcn) FPEX0setup.importDSCobj(dsc_data) ``` Now you can modify the setup and finally extrapolate your data via ```python fit = fpex0.fit(FPEX0setup) ``` Note that both `addCP()` and `importDSCobj()` can also take lists of `DSC_Data` objects: ```python dsc_data = addCP([dsc_data1, dsc_data2, dsc_data3]) # now dsc_data holds a list FPEX0setup.importDSCobj(dsc_data) ``` If you want to skip one of the steps, check for * `CP_DIN11357()` and `CP_sapphire_DIN11357()` (heat capacities), * `subtractBaseline()` and `getBaseline()` (baseline). These sets of functions can execute the raw single steps. ## About the implementation This is a Python version of Andreas Sommer's matlab implementation, which can be found at https://github.com/andreassommer/fpex0. The Fokker-Planck equation is solved as an ODE via method of lines, using scipy's solve_ivp with BDF method as a default. This is basically a python version of matlab ode15s. The initial distribution, drift and diffusion are then fitted to the measurement data via an optimizer, by default scipy's least_squares (which is also currently the only option). Other optimizers and integrators can be implemented by the user, if compatible to the interplay of `fpex0.fit()`, `residual()` and `simulate()`. However, the software is designed around the method of lines, so using another method to solve Fokker-Planck will require significant adjustments.


نیازمندی

مقدار نام
- scipy
- numpy
- sympy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl fpex0-0.9.1:

    pip install fpex0-0.9.1.whl


نصب پکیج tar.gz fpex0-0.9.1:

    pip install fpex0-0.9.1.tar.gz