معرفی شرکت ها


fpcmci-4.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A causal discovery Python package
ویژگی مقدار
سیستم عامل -
نام فایل fpcmci-4.1.2
نام fpcmci
نسخه کتابخانه 4.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Luca Castri
ایمیل نویسنده lucacastri94@gmail.com
آدرس صفحه اصلی https://github.com/lcastri/fpcmci
آدرس اینترنتی https://pypi.org/project/fpcmci/
مجوز -
# <img src="https://github.com/lcastri/fpcmci/raw/developer/docs/assets/icon.png" width="25"> FPCMCI - Filtered PCMCI Extension of the state-of-the-art causal discovery method [PCMCI](https://github.com/jakobrunge/tigramite) augmented with a feature-selection method based on Transfer Entropy. The algorithm, starting from a prefixed set of variables, identifies the correct subset of features and possible links between them which describe the observed process. Then, from the selected features and links, a causal model is built. ## Useful links * [Documentation](https://lcastri.github.io/fpcmci/) * [Tutorials](https://github.com/lcastri/fpcmci/tree/main/tutorials) ## Why FPCMCI? Current state-of-the-art causal discovery approaches suffer in terms of speed and accuracy of the causal analysis when the process to be analysed is composed by a large number of features. FPCMCI is able to select the most meaningful features from a set of variables and build a causal model from such selection. To this end, the causal analysis results **faster** and **more accurate**. In the following it is presented an example showing a comparison between causal models obtained by PCMCI and FPCMCI causal discovery algorithms on the same data. The latter have been created by defining a 6-variables system defined as follows: ``` python min_lag = 1 max_lag = 1 np.random.seed(1) nsample = 1500 nfeature = 6 d = np.random.random(size = (nsample, feature)) for t in range(max_lag, nsample): d[t, 0] += 2 * d[t-1, 1] + 3 * d[t-1, 3] d[t, 2] += 1.1 * d[t-1, 1]**2 d[t, 3] += d[t-1, 3] * d[t-1, 2] d[t, 4] += d[t-1, 4] + d[t-1, 5] * d[t-1, 0] ``` Causal Model by PCMCI | Causal Model by FPCMCI :-------------------------:|:-------------------------: ![](https://github.com/lcastri/fpcmci/raw/main/images/PCMCI_example_1.png "Causal model by PCMCI") | ![](https://github.com/lcastri/fpcmci/raw/main/images/FPCMCI_example_1.png "Causal model by FPCMCI") Execution time ~ 6min 50sec | Execution time ~ 2min 45sec The causal analysis performed by the **FPCMCI** results not only faster but also more accurate. Indeed, the causal model derived by the FPCMCI agrees with the structure of the system of equations, instead the one derived by the PCMCI presents spurious links: * $X_2$ &rarr; $X_4$ * $X_2$ &rarr; $X_5$ Note that, since all the 6 variables were involved in the evolution of the system, the FPCMCI did not remove any of them. In the following example instead, we added a new variable in the system which is defined just by the noise component (as $X_1$ and $X_5$) and does not appear in any other equation, defined as follows: $X_6(t) = \eta_6(t)$. In the following the comparison between PCMCI and FPCMCI with this new system configuration: Causal Model by PCMCI | Causal Model by FPCMCI :-------------------------:|:-------------------------: ![](https://github.com/lcastri/fpcmci/raw/main/images/PCMCI_example_2.png "Causal model by PCMCI") | ![](https://github.com/lcastri/fpcmci/raw/main/images/FPCMCI_example_2.png "Causal model by FPCMCI") Execution time ~ 8min 40sec | Execution time ~ 3min 00sec In this case the FPCMCI removes the $X_6$ variable from the causal graph leading to generate exactly the same causal model as in the previous example, with comparable executional time. Instead, the PCMCI suffers the presence of $X_6$ in terms of time and accuracy of the causal structure. Indeed, a spurious link $X_6$ &rarr; $X_5$ appears in the causal graph derived by the PCMCI. ## Citation If you found this useful for your work, please cite this papers: ``` @inproceedings{castri2023fpcmci, title={Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios}, author={Castri, Luca and Mghames, Sariah and Hanheide, Marc and Bellotto, Nicola}, booktitle={Conference on Causal Learning and Reasoning (CLeaR)}, year={2023}, } ``` ## Requirements * tigramite==5.1.0.3 * pandas==1.5.2 * netgraph>=4.10.2 * networkx>=2.8.6 * ruptures==1.1.7 * scikit_learn==1.1.3 * torch>=1.11.0 * gpytorch>=1.4 * dcor>=0.5.3 * h5py==3.7.0 ## Installation Before installing the FPCMCI package, you need to install the [IDTxl package](https://github.com/pwollstadt/IDTxl) used for the feature-selection process, following the guide described [here](https://github.com/pwollstadt/IDTxl/wiki/Installation-and-Requirements). Once complete, you can install the current release of `FPCMCI` with: ``` shell pip install fpcmci ``` For a complete installation (IDTxl and FPCMCI) you can run the following commands: ```shell # IDTxl git clone https://github.com/pwollstadt/IDTxl.git conda create --name fpcmci python=3 pip matplotlib h5py scipy networkx conda activate fpcmci conda install -c conda-forge jpype1 # required by CPU JIDT estimators conda install -c conda-forge pyopencl # required by GPU OpenCL estimators conda install -c anaconda ecos # required by Tartu PID estimator conda install numba # required by NumbaCuda estimators conda install cudatoolkit # required by NumbaCuda estimators conda install mpmath cd IDTxl pip install -e . # FPCMCI pip install fpcmci ``` ## Recent changes * 4.1.2 tutorials adapted to 4.1.1 and get_SCM method added in FPCMCI * 4.1.1 PCMCI dependencies fix: FPCMCI causal model field added, FPCMCI.run() and .run_pcmci() outputs the selected variables and the corresponding causal model * 4.1.0 FSelector and FValidator turned into FPCMCI and PCMCI, show_edge_label removed and dag optimized, new package included in the setup.py, added tutorials, and new example in README.md. * 4.0.1 online documentation and paths fixes. * 4.0.0 package published.


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl fpcmci-4.1.2:

    pip install fpcmci-4.1.2.whl


نصب پکیج tar.gz fpcmci-4.1.2:

    pip install fpcmci-4.1.2.tar.gz