معرفی شرکت ها


fourier-neural-operator-0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Library and exemples to use the fourier neural operator
ویژگی مقدار
سیستم عامل -
نام فایل fourier-neural-operator-0.9
نام fourier-neural-operator
نسخه کتابخانه 0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/Forbu/fourier_neural_operator
آدرس اینترنتی https://pypi.org/project/fourier-neural-operator/
مجوز -
[![Generic badge](https://img.shields.io/badge/License-MIT-<COLOR>.svg)](https://shields.io/) ![PyPI version](https://badge.fury.io/py/fourier-neural-operator.svg) # Fourier Neural Operator package The original code and package come from : https://github.com/zongyi-li/fourier_neural_operator (the original author of the fourier neural operator paper). We created some minor modification on the package to create a proper pip package using fourier neural operator. You can install it using (after having download the repo) ```bash python setup.py install ``` or simply using pypi : ```bash pip install fourier-neural-operator ``` Then to create a fourier model with the pytorch framework, you can write : ```python import fourier_neural_operator.fourier_2d as fourier_2d model = fourier_2d.FNO2d(modes1=modes1, modes2=modes2, width=width, channel_input=3, output_channel=3) ``` You can also simply import fourier layer : ```python from fourier_neural_operator.fourier_2d.layers.fourier_2d import SpectralConv2d spectral_layer = SpectralConv2d(width, width, modes1, modes2) ``` The package is still under construction and modification will come for fourier_3d and 1d. # Fourier Neural Operator explaination This repository contains the code for the paper: - [(FNO) Fourier Neural Operator for Parametric Partial Differential Equations](https://arxiv.org/abs/2010.08895) In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation (including the turbulent regime). Our Fourier neural operator shows state-of-the-art performance compared to existing neural network methodologies and it is up to three orders of magnitude faster compared to traditional PDE solvers. It follows from the previous works: - [(GKN) Neural Operator: Graph Kernel Network for Partial Differential Equations](https://arxiv.org/abs/2003.03485) - [(MGKN) Multipole Graph Neural Operator for Parametric Partial Differential Equations](https://arxiv.org/abs/2006.09535) You can check the code in the exemples_paper/ directory. ## Requirements - We have updated the files to support [PyTorch 1.8.0](https://pytorch.org/). Pytorch 1.8.0 starts to support complex numbers and it has a new implementation of FFT. As a result the code is about 30% faster. - Previous version for [PyTorch 1.6.0](https://pytorch.org/) is avaiable at `FNO-torch.1.6`. ## Files The code is in the form of simple scripts. Each script shall be stand-alone and directly runnable. - `exemples_paper/fourier_1d_exemple.py` is the Fourier Neural Operator for 1D problem such as the (time-independent) Burgers equation discussed in Section 5.1 in the [paper](https://arxiv.org/pdf/2010.08895.pdf). - `exemples_paper/fourier_2d_exemple.py` is the Fourier Neural Operator for 2D problem such as the Darcy Flow discussed in Section 5.2 in the [paper](https://arxiv.org/pdf/2010.08895.pdf). - `exemples_paper/fourier_2d_time_exemple.py` is the Fourier Neural Operator for 2D problem such as the Navier-Stokes equation discussed in Section 5.3 in the [paper](https://arxiv.org/pdf/2010.08895.pdf), which uses a recurrent structure to propagates in time. - `exemples_paper/fourier_3d_exemple.py` is the Fourier Neural Operator for 3D problem such as the Navier-Stokes equation discussed in Section 5.3 in the [paper](https://arxiv.org/pdf/2010.08895.pdf), which takes the 2D spatial + 1D temporal equation directly as a 3D problem - The lowrank methods are similar. These scripts are the Lowrank neural operators for the corresponding settings. - `data_generation` are the conventional solvers we used to generate the datasets for the Burgers equation, Darcy flow, and Navier-Stokes equation. ## Datasets We provide the Burgers equation, Darcy flow, and Navier-Stokes equation datasets we used in the paper. The data generation configuration can be found in the paper. - [PDE datasets](https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-?usp=sharing) The datasets are given in the form of matlab file. They can be loaded with the scripts provided in utilities.py. Each data file is loaded as a tensor. The first index is the samples; the rest of indices are the discretization. For example, - `Burgers_R10.mat` contains the dataset for the Burgers equation. It is of the shape [1000, 8192], meaning it has 1000 training samples on a grid of 8192. - `NavierStokes_V1e-3_N5000_T50.mat` contains the dataset for the 2D Navier-Stokes equation. It is of the shape [5000, 64, 64, 50], meaning it has 5000 training samples on a grid of (64, 64) with 50 time steps. We also provide the data generation scripts at `data_generation`. ## Models Here are the pre-trained models. It can be evaluated using _eval.py_ or _super_resolution.py_. - [models](https://drive.google.com/drive/folders/1swLA6yKR1f3PKdYSKhLqK4zfNjS9pt_U?usp=sharing) ## Citations ``` @misc{li2020fourier, title={Fourier Neural Operator for Parametric Partial Differential Equations}, author={Zongyi Li and Nikola Kovachki and Kamyar Azizzadenesheli and Burigede Liu and Kaushik Bhattacharya and Andrew Stuart and Anima Anandkumar}, year={2020}, eprint={2010.08895}, archivePrefix={arXiv}, primaryClass={cs.LG} } @misc{li2020neural, title={Neural Operator: Graph Kernel Network for Partial Differential Equations}, author={Zongyi Li and Nikola Kovachki and Kamyar Azizzadenesheli and Burigede Liu and Kaushik Bhattacharya and Andrew Stuart and Anima Anandkumar}, year={2020}, eprint={2003.03485}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ## Future work We are currently adding some new work to the repo : - [ ] Factorized Fourier Neural Operator - [ ] Conditioned Fourier Neural Operator


نحوه نصب


نصب پکیج whl fourier-neural-operator-0.9:

    pip install fourier-neural-operator-0.9.whl


نصب پکیج tar.gz fourier-neural-operator-0.9:

    pip install fourier-neural-operator-0.9.tar.gz