معرفی شرکت ها


foundry-ml-0.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package to support simplified application of machine learning models to datasets in materials science
ویژگی مقدار
سیستم عامل -
نام فایل foundry-ml-0.6.0
نام foundry-ml
نسخه کتابخانه 0.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Aristana Scourtas, KJ Schmidt, Isaac Darling, Aadit Ambadkar, Braeden Cullen, Imogen Foster, Ribhav Bose, Zoa Katok, Ethan Truelove, Ian Foster, Ben Blaiszik
ایمیل نویسنده blaiszik@uchicago.edu
آدرس صفحه اصلی https://github.com/MLMI2-CSSI/foundry
آدرس اینترنتی https://pypi.org/project/foundry-ml/
مجوز MIT License
<picture> <source srcset="https://raw.githubusercontent.com/MLMI2-CSSI/foundry/main/assets/foundry-white.png" height=175" media="(prefers-color-scheme: dark)"> <img src="https://raw.githubusercontent.com/MLMI2-CSSI/foundry/main/assets/foundry-black.png" height="175"> </picture> [![PyPI](https://img.shields.io/pypi/v/foundry_ml.svg)](https://pypi.python.org/pypi/foundry_ml) [![Tests](https://github.com/MLMI2-CSSI/foundry/actions/workflows/tests.yml/badge.svg)](https://github.com/MLMI2-CSSI/foundry/actions/workflows/tests.yml) [![Tests](https://github.com/MLMI2-CSSI/foundry/actions/workflows/python-publish.yml/badge.svg)](https://github.com/MLMI2-CSSI/foundry/actions/workflows/python-publish.yml) [![NSF-1931306](https://img.shields.io/badge/NSF-1931306-blue)](https://www.nsf.gov/awardsearch/showAward?AWD_ID=1931306&HistoricalAwards=false) [<img src="https://img.shields.io/badge/view-documentation-blue">](https://ai-materials-and-chemistry.gitbook.io/foundry/) Foundry-ML simplifies the discovery and usage of ML-ready datasets in materials science and chemistry providing a simple API to access even complex datasets. * Load ML-ready data with just a few lines of code * Work with datasets in local or cloud environments. * Publish your own datasets with Foundry to promote community usage * (in progress) Run published ML models without hassle Learn more and see our available datasets on [Foundry-ML.org](https://foundry-ml.org/) # Documentation Information on how to install and use Foundry is available in our documentation [here](https://ai-materials-and-chemistry.gitbook.io/foundry/v/docs/). DLHub documentation for model publication and running information can be found [here](https://dlhub-sdk.readthedocs.io/en/latest/servable-publication.html). # Quick Start Install Foundry-ML via command line with: `pip install foundry_ml` You can use the following code to import and instantiate Foundry-ML, then load a dataset. ```python from foundry import Foundry f = Foundry(index="mdf") f = f.load("10.18126/e73h-3w6n", globus=True) ``` If running this code in a notebook, a table of metadata for the dataset will appear: <img width="903" alt="metadata" src="https://user-images.githubusercontent.com/16869564/197038472-0b6ae559-4a6b-4b20-88e5-679bb6eb4f5c.png"> We can use the data with `f.load_data()` and specifying splits such as `train` for different segments of the dataset, then use matplotlib to visualize it. ```python res = f.load_data() imgs = res['train']['input']['imgs'] desc = res['train']['input']['metadata'] coords = res['train']['target']['coords'] n_images = 3 offset = 150 key_list = list(res['train']['input']['imgs'].keys())[0+offset:n_images+offset] fig, axs = plt.subplots(1, n_images, figsize=(20,20)) for i in range(n_images): axs[i].imshow(imgs[key_list[i]]) axs[i].scatter(coords[key_list[i]][:,0], coords[key_list[i]][:,1], s = 20, c = 'r', alpha=0.5) ``` <img width="595" alt="Screen Shot 2022-10-20 at 2 22 43 PM" src="https://user-images.githubusercontent.com/16869564/197039252-6d9c78ba-dc09-4037-aac2-d6f7e8b46851.png"> [See full examples](./examples) # Primary Support This work was supported by the National Science Foundation under NSF Award Number: 1931306 "Collaborative Research: Framework: Machine Learning Materials Innovation Infrastructure". # Other Support Foundry-ML brings together many components in the materials data ecosystem. Including [MAST-ML](https://mastmldocs.readthedocs.io/en/latest/), the [Data and Learning Hub for Science](https://www.dlhub.org) (DLHub), and the [Materials Data Facility](https://materialsdatafacility.org) (MDF). ## MAST-ML This work was supported by the National Science Foundation (NSF) SI2 award No. 1148011 and DMREF award number DMR-1332851 ## The Data and Learning Hub for Science (DLHub) This material is based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. https://www.dlhub.org ## The Materials Data Facility This work was performed under financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the [Center for Hierarchical Material Design (CHiMaD)](http://chimad.northwestern.edu). This work was performed under the following financial assistance award 70NANB19H005 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). This work was also supported by the National Science Foundation as part of the [Midwest Big Data Hub](http://midwestbigdatahub.org) under NSF Award Number: 1636950 "BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate". https://www.materialsdatafacility.org


نیازمندی

مقدار نام
>=0.8.0 mdf-forge
<4,>=3 globus-sdk
>=1.0.0 dlhub-sdk
>=1.15.4 numpy
>=0.23.4 pandas
>=1.4 pydantic
>=0.4.0 mdf-connect-client
>=2.10.0 h5py
- json2table


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl foundry-ml-0.6.0:

    pip install foundry-ml-0.6.0.whl


نصب پکیج tar.gz foundry-ml-0.6.0:

    pip install foundry-ml-0.6.0.tar.gz