معرفی شرکت ها


fostool-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

FOST Python Package
ویژگی مقدار
سیستم عامل -
نام فایل fostool-0.0.4
نام fostool
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Microsoft
ایمیل نویسنده fostool@microsoft.com
آدرس صفحه اصلی https://github.com/microsoft/FOST
آدرس اینترنتی https://pypi.org/project/fostool/
مجوز The MIT License (Microsoft)
<!-- [![Python Versions](https://img.shields.io/pypi/pyversions/fostool.svg?logo=python&logoColor=white)](https://test.pypi.org/project/fostool/0.2.3/#files) [![Platform](https://img.shields.io/badge/platform-linux%20%7C%20windows%20%7C%20macos-lightgrey)](https://test.pypi.org/project/fostool/0.2.3/#files) [![PypI Versions](https://img.shields.io/pypi/v/fostool)](https://pypi.org/project/fostool/#history) [![Upload Python Package](https://github.com/microsoft/fost/workflows/Upload%20Python%20Package/badge.svg)](https://pypi.org/project/fostool/) [![Github Actions Test Status](https://github.com/microsoft/fost/workflows/Test/badge.svg?branch=main)](https://github.com/microsoft/fost/actions) [![Documentation Status](https://readthedocs.org/projects/fost/badge/?version=latest)](https://fost.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/pypi/l/fostool)](LICENSE) [![Join the chat at https://gitter.im/Microsoft/fostool](https://badges.gitter.im/Microsoft/fostool.svg)](https://gitter.im/Microsoft/fostool?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) --> <p align="center"> <img src="https://dsm01pap002files.storage.live.com/y4mueD2H6WE6Df3edTW6YE_KLeND5ROVCKksKxGarweSuk9VW2m4jrY8EBTVN5qXiQEnuyfSQZ2t9HOtrsLjXSPqKkmMrMtrmncb3xVzITPl0pu7mwESEjF1CooSkvtdTNPBW237K1bTNqyA9cD-opu_ISObWFLusFpAFJQk_tSxRAYi-mp4QI9fcXUUTYgndae?width=4248&height=1324&cropmode=none" width=50% /> </p> - [**Fost**](#fost) - [Framework of Fost](#framework-of-fost) - [Quick Start](#quick-start) - [Installation](#installation) - [Train with FOST](#train-with-fost) - [Data Format](#data-format) - [Examples](#examples) - [Contact Us](#contact-us) # FOST <!-- FOST is an easy-use forecasting tools aiming at spatial-temporal forecasting. --> FOST(Forecasting open source tool) aims to provide an easy-use tool for spatial-temporal forecasting. The users only need to organize their data into a certain format and then get the prediction results with one command. FOST automatically handles the missing and abnormal values, and captures both spatial and temporal correlations efficiently. # Framework of FOST Following is the framework of FOST, basically it contains 4 main components: ![FOST framework](https://dsm01pap002files.storage.live.com/y4mqv6c15r0vEfpNGcpMnUa4sOxYZFDDBL6h47EdLlVuKZcGTUw8LKrseJnZ2Q8hlJK3VB0lj13TJmF5pvrC5LeiKHR4cfSIGJT3YmV2D_-O6HpG8VFVKM5Alx9hEhAvc0fOAXFkthsC5qAccx8_eJsoKj8eTHvAns0z72v811JOVbswqGLWOeGNyUIjgQiL52F?width=1050&height=268&cropmode=none) | Module name | Description | | ------------- | ------------------------------------------------------------ | | Preprocessing | Preprocessing module aims at handle varies data situation, currently FOST designed sub-module to handle issues such as missing value, unalignment timestamp and feature selection. | | Modeling | FOST contains implements for different mainstream deep learning models such as RNN, MLP and GNN, for better performance on varies custom data. Further model implements such as Transformer, N-beats are in progress. | | Fusion | Fusion module aims at automatically select and ensemble model predictions. | | Utils | There are many other utils in FOST, such as neural-network trainer and predictor, result plotter and so on. | # Quick Start ## Installation ### Installation of dependency packages #### 1. Prerequisites This project relies on `pytorch >= 1.8` and `torch-geometric >= 1.7.2` - torch installation reference link:https://pytorch.org/get-started/previous-versions/ - torch-geometric installation reference link: https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html #### 2. Installation You can install fost with pip: ``` pip install fostool ``` ## Train with FOST #### 1. Import forecasting pipeline ```python from fostool.pipeline import Pipeline ``` #### 2. Setting data path and lookahead You need to pass your `train.csv` and `graph.csv` for model training, see [dataformat](#data-format) for data preparing. ```python train_path = '/path/to/your/train.csv' graph_path = '/path/to/your/graph.csv' # graph_path is alternative lookahead = 7 # Forward steps you would like to predict. ``` #### 3. Fit and predict We provide a default config file in config/default.yaml. You could use your config file through config_path augment. ```python fost = Pipeline(lookahead=lookahead, train_path=train_path, graph_path=graph_path) fost.fit() result = fost.predict() ``` #### 4. Plot results ```python fost.plot(result) ``` # Data Format > You can fetch sample data on `/examples` ### 1. train.csv 3 columns are required for `train.csv`: + Node: node name for current data + Date: date or timestamp for current data + TARGET: target for prediction A valid format may look like: | Node | Date | TARGET | | ------- | ---------- | ---------- | | Alaska | 1960-01-01 | 800592.0 | | Alaska | 1961-01-01 | 933600.0 | | Alabama | 1960-01-01 | 10141633.0 | | Alabama | 1961-01-01 | 9885992.0 | | Alabama | 1962-01-01 | 10497917.0 | Columns except above will be regarded as feature columns. ### 2. graph.csv (option) `graph.csv` should only contains 3 columns: + node_0: node name for fist node, node name should align with node name in `train.csv`. + node_1: node name for second node, node name should align with node name in `train.csv`. + weight: weight on connection for node_0 to node_1. If `graph.csv` is not provided, identity graph will be used. # Examples We prepared several examples on `examples`: 1. [Predict simulation cosine curve](/examples/1.%20Cosine%20prediction.ipynb) 2. [Predict States Energy Data](/examples/2.%20Predict%20States%20Energy%20Data.ipynb) 3. [Save and load model](/examples/3.%20Save%20and%20load.ipynb) # Contact Us - If you have any issues, please create issue [here](https://github.com/microsoft/fost/issues/new/choose) or send messages in [gitter](https://gitter.im/Microsoft/fost). - For other reasons, you are welcome to contact us by email([fostool@microsoft.com](mailto:fostool@microsoft.com)).


نیازمندی

مقدار نام
- scikit-learn
- matplotlib
- numpy
- pandas
>=5.1 pyyaml
- addict


نحوه نصب


نصب پکیج whl fostool-0.0.4:

    pip install fostool-0.0.4.whl


نصب پکیج tar.gz fostool-0.0.4:

    pip install fostool-0.0.4.tar.gz