# formula - Arbitrary-precision formula parser and solver
[](https://pypi.org/project/formula/)
[](https://pypi.org/project/formula/)
[](https://pypi.org/project/formula/)
[](https://pypistats.org/packages/formula)
[](https://travis-ci.com/github/hozblok/formula/branches)
[](https://github.com/hozblok/formula/blob/master/LICENSE)
[](https://gitter.im/don_vanchos/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

## Development status
[](https://pypi.org/project/formula/)
[](https://pypi.org/project/formula/)
Development plan:
- Complex numbers support. (Character `i` are reserved for this by default.)
This project built with [pybind11](https://github.com/pybind/pybind11).
## Installation
### On Unix (Linux or OS X)
- `pip install formula`
### On Windows
- `pip install formula`
- <details><summary>if you get an `error: Microsoft Visual C++ 14.0 is required.`</summary>
<p>
Install Microsoft Visual C++ Build Tools 14.0 from https://visualstudio.microsoft.com/visual-cpp-build-tools/
and try again. Example of the correct selection to install:

#### Windows runtime requirements
On Windows, the Visual C++ 2015 redistributable packages are a runtime
requirement for this project. It can be found [here](https://www.microsoft.com/en-us/download/details.aspx?id=48145).
If you use the Anaconda python distribution, you may require the Visual Studio
runtime as a platform-dependent runtime requirement for you package:
```yaml
requirements:
build:
- python
- setuptools
- pybind11
run:
- python
- vs2015_runtime # [win]
```
</p>
</details>
## Documentation
**formula** contains case sensitive (by default) string parser.
Let's imagine that we have a string expression: `"(x^2+y)/sin(a*pi)"`:
```python
>>> from formula import Solver
>>> formula = Solver("(x^2+y)/sin(a*pi)", precision=32)
```
Then we want to calculate the value of this function in the following point:
```python
>>> point = {"x": "3", "y": "3e-20", "a": "-0.5"}
```
And it is enough to call the `formula` object to calculate the value of the expression or the derivative of the expression at this point:
```python
>>> formula(point) # (3^2 + 3e-50)/sin(-pi/2)
'-9.00000000000000000003'
>>> formula(point, derivative="x") # 2*3/sin(-pi/2)
'-6'
>>> formula(point, derivative=("y", "a")) # [1/sin(-pi/2),- (3^2 + 3e-50) * cos(-pi/2) / sin(-pi/2)]
['-1', '0']
```
## Simple examples
### One plus one =)
```python
>>> from formula import Solver, FmtFlags
>>> Solver("1+1", precision=32)()
'2'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.showpos)
'+2'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.fixed | FmtFlags.showpos)
'+2.00000000000000000000'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.scientific | FmtFlags.showpos)
'+2.00000000000000000000e+00'
```
### Find the number of PI using arcsin
#### Precision = 32
```python
>>> from formula import Solver, FmtFlags
>>> Solver("2*asin(x)", precision=32)({"x": "1"})
# just 32 digits:
'3.1415926535897932384626433832795'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=32)
# by default format_digits is equal to precision:
'3.1415926535897932384626433832795'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=31)
# let's round in accordance with format_digits:
'3.14159265358979323846264338328'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=30)
'3.14159265358979323846264338328'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=29)
'3.1415926535897932384626433833'
>>> Solver("2*asin(x)", 32)(1, format_digits=28)
'3.141592653589793238462643383'
>>> Solver("2*asin(x)", 32)(1, format_digits=2)
'3.1'
>>> Solver("2*asin(x)", 32)(1, format_digits=1)
'3'
>>> Solver("2*asin(x)", 32)(1, format_digits=0)
# show the entire chunk of memory, including insignificant digits:
'3.141592653589793238462643383279502884197169399374'
```
#### Precision = 4096
```python
>>> from formula import Solver, FmtFlags
>>> Solver("2*asin(x)", precision=4096)(1) # 4095 digits of pi after the point ;-)
'3.141592653589793238462643383279502884197169399375105820974944592307816406286
208998628034825342117067982148086513282306647093844609550582231725359408128481
117450284102701938521105559644622948954930381964428810975665933446128475648233
786783165271201909145648566923460348610454326648213393607260249141273724587006
606315588174881520920962829254091715364367892590360011330530548820466521384146
951941511609433057270365759591953092186117381932611793105118548074462379962749
567351885752724891227938183011949129833673362440656643086021394946395224737190
702179860943702770539217176293176752384674818467669405132000568127145263560827
785771342757789609173637178721468440901224953430146549585371050792279689258923
542019956112129021960864034418159813629774771309960518707211349999998372978049
951059731732816096318595024459455346908302642522308253344685035261931188171010
003137838752886587533208381420617177669147303598253490428755468731159562863882
353787593751957781857780532171226806613001927876611195909216420198938095257201
065485863278865936153381827968230301952035301852968995773622599413891249721775
283479131515574857242454150695950829533116861727855889075098381754637464939319
255060400927701671139009848824012858361603563707660104710181942955596198946767
837449448255379774726847104047534646208046684259069491293313677028989152104752
162056966024058038150193511253382430035587640247496473263914199272604269922796
782354781636009341721641219924586315030286182974555706749838505494588586926995
690927210797509302955321165344987202755960236480665499119881834797753566369807
426542527862551818417574672890977772793800081647060016145249192173217214772350
141441973568548161361157352552133475741849468438523323907394143334547762416862
518983569485562099219222184272550254256887671790494601653466804988627232791786
085784383827967976681454100953883786360950680064225125205117392984896084128488
626945604241965285022210661186306744278622039194945047123713786960956364371917
287467764657573962413890865832645995813390478027590099465764078951269468398352
595709825822620522489407726719478268482601476990902640136394437455305068203496
252451749399651431429809190659250937221696461515709858387410597885959772975498
930161753928468138268683868942774155991855925245953959431049972524680845987273
644695848653836736222626099124608051243884390451244136549762780797715691435997
700129616089441694868555848406353422072225828488648158456028506016842739452267
467678895252138522549954666727823986456596116354886230577456498035593634568174
324112515076069479451096596094025228879710893145669136867228748940560101503308
617928680920874760917824938589009714909675985261365549781893129784821682998948
722658804857564014270477555132379641451523746234364542858444795265867821051141
354735739523113427166102135969536231442952484937187110145765403590279934403742
007310578539062198387447808478489683321445713868751943506430218453191048481005
370614680674919278191197939952061419663428754440643745123718192179998391015919
561814675142691239748940907186494231961567945208095146550225231603881930142093
762137855956638937787083039069792077346722182562599661501421503068038447734549
202605414665925201497442850732518666002132434088190710486331734649651453905796
268561005508106658796998163574736384052571459102897064140110971206280439039759
515677157700420337869936007230558763176359421873125147120532928191826186125867
321579198414848829164470609575270695722091756711672291098169091528017350671274
858322287183520935396572512108357915136988209144421006751033467110314126711136
990865851639831501970165151168517143765761835155650884909989859982387345528331
635507647918535893226185489632132933089857064204675259070915481416549859461637
180270981994309924488957571282890592323326097299712084433573265489382391193259
746366730583604142813883032038249037589852437441702913276561809377344403070746
921120191302033038019762110110044929321516084244485963766983895228684783123552
658213144957685726243344189303968642624341077322697802807318915441101044682325
271620105265227211166039666557309254711055785376346682065310989652691862056476
931257058635662018558100729360659876486118'
```
### Other examples
```python
>>> from formula import Solver, FmtFlags
>>> Solver("9.99 + 9e-20 + 9e-51", precision=64)(None, None, 50, FmtFlags.scientific)
'9.99000000000000000009000000000000000000000000000001e+00'
>>> Solver("9.99 + 9e-20 + 9e-51", 64)(None, None, 51, FmtFlags.scientific)
'9.990000000000000000090000000000000000000000000000009e+00'
>>> Solver("0 + 9e-20 + 9e-51", 64)(None, None, 31, FmtFlags.scientific)
'9.0000000000000000000000000000009e-20'
```
## License
**formula** is provided under Apache license that can be found in the LICENSE
file. By using, distributing, or contributing to this project, you agree to the
terms and conditions of this license.