معرفی شرکت ها


forecast-x-0.12.20


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Forecasting Model package based on naive models
ویژگی مقدار
سیستم عامل -
نام فایل forecast-x-0.12.20
نام forecast-x
نسخه کتابخانه 0.12.20
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alejandro De Barros
ایمیل نویسنده alejandrodbn@gmail.com
آدرس صفحه اصلی https://github.com/alejandrodbn/forecast
آدرس اینترنتی https://pypi.org/project/forecast-x/
مجوز -
# Forecast_x: Toolkit with Naive models for time series. ![Forecast_x logo](https://www.alejandrodebarros.com/forecast_x.png) [![PyPI version](https://badge.fury.io/py/forecast-x.svg)](https://badge.fury.io/py/forecast-x) [![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/alejandrodbn/forecast/blob/master/LICENSE) [![Downloads](https://pepy.tech/badge/forecast-x)](https://pepy.tech/project/forecast-x) [![Downloads](https://pepy.tech/badge/forecast-x/month)](https://pepy.tech/project/forecast-x) [![Downloads](https://pepy.tech/badge/forecast-x/week)](https://pepy.tech/project/forecast-x) **If you're interested in financially supporting my open source, consider [visiting this link](https://cash.me/$AlejandroDeBarros). Your support helps tremendously with sustainability this work. __Forecast_x__ is a pure python package that provides different naive models for fitting multiple time series, especially in batch process, due to its powerful flexibility and easy usage. This library can be used in several industries with focus on manufacturing processes, where forecasting models with low cost of error are needed to plan raw material consumption. ## Models Forecast_x uses the following models to produce forecast: - Model Naive - Model Seas Naive - Model Mean Two Periods - Model Mean Three Periods - Model Half Seas Mean - Model Seas Period Mean - Model Double Seas Mean - Model Seas Growth - Model Expo Weighted - Model Threefith Mean - Model Multi Seas Mean - Model Seas Double Mean Growth - Model Grand Mean - Model Smooth Grand Mean - Model Last Seas Mean - Model Current Mean Seas - Model Smooth Double Seas Naive - Model Truncated Mean - Model Harmonic Mean - Model Heronian Mean ## Getting started: 10 seconds to Forecast_x Here is how-to use `Forecast_x` models: ```python from forecast_x import forecast_x as fx # time series observation time_series = [51, 17, 28, 37, 52, 21, 34, 47, 38, 35, 7, 27] freq = 12 # monthly h = 12 # forecast months ahead # Creating the forecast object f = fx.forecast(time_series, freq, h) # Applying any the model from the package model = f.model_naive() # The model variable would produce a list of three elements: # - Fitting Values # - Error # - Forecast model ``` To get only forecast of a given model you should use: ```python f.get_forecast('model_naive') ``` To allow the package to select the best fit based on multiple cross validation you should use: ```python model = f.best_model() # forecast_x would select 'model_seas_period_mean' as best model based on test results model # Getting forecast from best model forecast = get_forecast(model) ``` ## Installation ```sh # or PyPI pip install forecast_x ``` ## Dependencies - None. ## Python Version Supported on 3.5, 3.6 and 3.7. ## License [MIT](LICENSE) ## Documentation The official documentation will be available soon. ## Citation Citations or acknowledge on any work or project are very welcome: > Alejandro De Barros. 2018. > _Forecast_x: An open source forecasting tool for time series library for Python_ ## Meta Alejandro De Barros – (https://twitter.com/alejandrodbn) – alejandrodbn@gmail.com Distributed under the MIT license. See ``LICENSE`` for more information. [https://github.com/alejandrodbn/forecast](https://github.com/alejandrodbn/) ## Code of Conduct Everyone interacting with this project's codebases, issue trackers, and mailing lists is expected to follow the Code of Conduct.


نحوه نصب


نصب پکیج whl forecast-x-0.12.20:

    pip install forecast-x-0.12.20.whl


نصب پکیج tar.gz forecast-x-0.12.20:

    pip install forecast-x-0.12.20.tar.gz