معرفی شرکت ها


fondant-0.2.dev0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fondant - Composable pipelines for foundation model finetuning
ویژگی مقدار
سیستم عامل -
نام فایل fondant-0.2.dev0
نام fondant
نسخه کتابخانه 0.2.dev0
نگهدارنده ['Philippe Moussalli']
ایمیل نگهدارنده ['philippe.moussalli@ml6.eu']
نویسنده Simon Slangen
ایمیل نویسنده simon.slangen@ml6.eu
آدرس صفحه اصلی https://github.com/ml6-team/fondant
آدرس اینترنتی https://pypi.org/project/fondant/
مجوز Apache-2.0
# Fondant Fondant is a framework that speeds up the creation of KubeFlow pipelines to process big datasets and train [Foundation Models](https://fsi.stanford.edu/publication/opportunities-and-risks-foundation-models) such as: - Stable Diffusion - CLIP - Large Language Models (LLMs like GPT-3) on them. ## Installation Fondant can be installed using pip: ``` pip install fondant ``` ## Usage Fondant is built upon [KubeFlow](https://www.kubeflow.org/), a cloud-agnostic framework built by Google to orchestrate machine learning workflows on Kubernetes. An important aspect of KubeFlow are pipelines, which consist of a set of components being executed, one after the other. This typically involves transforming data and optionally training a machine learning model on it. Check out [this page](https://www.kubeflow.org/docs/components/pipelines/v1/concepts/) if you want to learn more about KubeFlow pipelines and components. Fondant offers ready-made components and helper functions that serve as boilerplate which you can use to speed up the creation of KubeFlow pipelines. To implement your own component, simply overwrite one of the components available in Fondant. In the example below, we leverage the `PandasTransformComponent` and overwrite its `transform` method. ``` import pandas as pd from fondant.components.pandas_components import PandasTransformComponent, PandasDataset, PandasDatasetDraft class MyFirstTransform(PandasTransformComponent): @classmethod def transform(cls, data: PandasDataset, extra_args: Optional[Dict] = None) -> PandasDatasetDraft: # Reading data index: List[str] = data.load_index() my_data: Scanner = data.load("my_data_source") # Transforming data table: pa.Table = my_data.to_table() df: pd.DataFrame = table.to_pandas() # ... transformed_table = pa.Table.from_pandas(df) # Returning output. return data.extend() \ .with_index(in) \ .with_data_source("my_transformed_data_source", \ Scanner.from_batches(table.to_batches()) ``` ## Components zoo Available components include: - Non-distributed Pandas components: `fondant.components.pandas_components.{PandasTransformComponent, PandasLoaderComponent}` Planned components include: - Spark-based components and base image. - HuggingFace Datasets components. With Kubeflow, it's possible to share and re-use components across different pipelines. To see an example, checkout this [sample notebook](https://github.com/Svendegroote91/kfp_samples/blob/master/Reusable%20Components%20101.ipynb) that showcases how you can save and load a component. Note that Google's [AI Hub](https://aihub.cloud.google.com) also contains components that you can easily re-use. Some interesting examples: - [Gather training data by querying BigQuery](https://aihub.cloud.google.com/p/products%2F4700cd7e-2826-4ce9-a1ad-33f4a5bf7433) - [Bigquery to TFRecords converter](https://aihub.cloud.google.com/p/products%2F28a006d0-c833-4c68-98ff-37358eeb7726) - [Executing an Apache Beam Python job in Cloud Dataflow](https://aihub.cloud.google.com/p/products%2F44999f4a-1668-4d42-a4e3-1269a8786840) - [Submitting a Cloud ML training job as a pipeline step](https://aihub.cloud.google.com/p/products%2Ffbe29250-9b67-4dfb-8900-d6ce41cdb85a) - [Deploying a trained model to Cloud Machine Learning Engine](https://aihub.cloud.google.com/p/products%2F7a08de6c-3864-4ccf-8151-4119e1b4e890) - [Batch predicting using Cloud Machine Learning Engine](https://aihub.cloud.google.com/p/products%2F3d5d2340-0eb2-4b03-aecc-ae34f6105822) ## Pipeline zoo To do: add ready-made pipelines. ## Examples Example use cases of Fondant include: - collect additional image-text pairs based on a few seed images and fine-tune Stable Diffusion - filter an image-text dataset to only include "count" examples and fine-tune CLIP to improve its counting capabilities Check out the [examples folder](examples) for some illustrations. ## Contributing We use [poetry](https://python-poetry.org/docs/) and pre-commit to enable a smooth developer flow. Run the following commands to set up your development environment: ```commandline pip install poetry poetry install pre-commit install ```


نیازمندی

مقدار نام
>=0.5.7,<0.6.0 dataclasses-json
>=4.17.3,<5.0.0 jsonschema
>=2.10.1,<3.0.0 datasets
>=1.8.19,<2.0.0 kfp
>=18.20.0,<19.0.0 kubernetes
>=1.3.5,<2.0.0 pandas


زبان مورد نیاز

مقدار نام
>=3.8,<4.0 Python


نحوه نصب


نصب پکیج whl fondant-0.2.dev0:

    pip install fondant-0.2.dev0.whl


نصب پکیج tar.gz fondant-0.2.dev0:

    pip install fondant-0.2.dev0.tar.gz