معرفی شرکت ها


fold-core-0.1.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Time Series Cross-Validation library that lets you build, deploy and update composite models easily. An order of magnitude speed-up, combined with flexibility and rigour.
ویژگی مقدار
سیستم عامل -
نام فایل fold-core-0.1.8
نام fold-core
نسخه کتابخانه 0.1.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mark Aron Szulyovszky
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/fold-core/
مجوز Proprietary
<!-- # fold --> <p align="center" style="display:flex; width:100%; align-items:center; justify-content:center;"> <a style="margin:2px" href="https://dream-faster.github.io/fold/"><img alt="Docs" src="https://img.shields.io/github/actions/workflow/status/dream-faster/fold/docs.yaml?logo=readthedocs"></a> <a style="margin:2px" href="https://codecov.io/gh/dream-faster/fold" ><img src="https://codecov.io/gh/dream-faster/fold/branch/main/graph/badge.svg?token=Z7I2XSF188"/></a> <a style="margin:2px" href="https://github.com/dream-faster/fold/actions/workflows/tests.yaml"><img alt="Tests" src="https://github.com/dream-faster/fold/actions/workflows/tests.yaml/badge.svg"/></a> <a style="margin:2px" href="https://discord.gg/EKJQgfuBpE"><img alt="Discord Community" src="https://img.shields.io/badge/Discord-%235865F2.svg?logo=discord&logoColor=white"></a> <a style="margin:2px" href="https://calendly.com/nowcasting/consultation"><img alt="Book a call with us!" src="https://shields.io/badge/-Speak%20with%20us-orange?logo=minutemailer&logoColor=white"></a> </p> <!-- PROJECT LOGO --> <br /> <div align="center"> <a href="https://dream-faster.github.io/fold/"> <img src="https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/logo.svg" alt="Logo" width="90" > </a> <h3 align="center"><b>FOLD</b><br></h3> <p align="center"> Fast <b>Adaptive Time Series ML </b> Engine <br/> <a href="https://dream-faster.github.io/fold/"><strong>Explore the docs »</strong></a> </p> </div> <br /> <!-- INTRO --> ![Adaptive Models](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/overview_diagrams/main_diagram.svg) The<b> <a href="https://dream-faster.github.io/fold/concepts/adaptive-ml/">Adaptive ML Engine</a></b> that lets you <b>build</b>, <b>deploy and update</b> Models easily. An order of magnitude speed-up, combined with flexibility and rigour.</b> <br/> ![Fold works with many third party libraries](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/overview_diagrams/third_party.svg) <!-- GETTING STARTED --> ## Main Features ![Fold's main features](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/overview_diagrams/main_features.svg) - 10x faster Adaptive Backtesting - [What does that mean?](https://dream-faster.github.io/fold/concepts/adaptive-ml/) - Composite Models made Adaptive - [What does that mean?](https://dream-faster.github.io/fold/concepts/adaptive-ml/) - Distributed computing - [Why is this important?](#Fold-is-different) - Update deployed models (coming in May) - [Why is this important?](#Fold-is-different) ## Installation - Prerequisites: `python >= 3.7` and `pip` - Install from pypi: ``` pip install fold-core ``` ## Quickstart You can quickly train your chosen models and get predictions by running: ```py from sklearn.ensemble import RandomForestRegressor from statsforecast.models import ARIMA from fold import ExpandingWindowSplitter, train_evaluate from fold.composites import Ensemble from fold.transformations import OnlyPredictions from fold.utils.dataset import get_preprocessed_dataset X, y = get_preprocessed_dataset( "weather/historical_hourly_la", target_col="temperature", shorten=1000 ) pipeline = [ Ensemble( [ RandomForestRegressor(), ARIMA(order=(1, 1, 0)), ] ), OnlyPredictions(), ] splitter = ExpandingWindowSplitter(initial_train_window=0.2, step=0.2) scorecard, prediction, trained_pipelines = train_evaluate(pipeline, X, y, splitter) ``` Thinking of using `fold`? We'd love to hear about your use case and help, [please book a free 30-min call with us](https://calendly.com/nowcasting/consultation)! (If you install `krisi` by running `pip install krisi` you get an extended report back, rather than a single metric.) ## Fold is different - Adaptive Models and Backtesting at lightning speed.<br/> <span style="color:orange;">**→ fold allows to simulate and evaluate your models like they would have performed, in reality/when deployed, with clever use of paralellization and design.**</span> - Create composite models: ensembles, hybrids, stacking pipelines, easily.<br/> <span style="color:orange;">**→ Underutilized, but [the easiest, fastest way to increase performance of your Time Series models.](https://linkinghub.elsevier.com/retrieve/pii/S0169207022001480)** </span> - Built with Distributed Computing in mind.<br/> <span style="color:orange;">**→ Deploy your research and development pipelines to a cluster with `ray`, and use `modin` to handle out-of-memory datasets (full support for modin is coming in April).**</span> - Bridging the gap between Online and Mini-Batch learning.<br/> <span style="color:orange;">**→ Mix and match `xgboost` with ARIMA, in a single pipeline. Boost your model's accuracy by updating them on every timestamp, if desired.**</span> - Update your deployed models, easily, as new data flows in.<br/> <span style="color:orange;">**→ Real world is not static. Let your models adapt, without the need to re-train from scratch.**</span> <!-- GETTING STARTED --> ## Examples, Walkthroughs and Blog Posts <table style="width:100%"> <tr> <th>Name</th> <th>Type</th> <th>Dataset Type</th> <th>Docs Link</th> <th>Colab</th> </tr> <tr> <td> ⚡️ Core Walkthrough </td> <td>Walkthrough</td> <td>Energy</td> <td> <a href='https://dream-faster.github.io/fold/walkthroughs/core_walkthrough/' target="_blank">Notebook</a> </td> <td> <a href='https://colab.research.google.com/drive/1CVhxOmbHO9PvsdHfGvR91ilJUqEnUuy8?usp=sharing' target="_blank">Colab</a> </td> </tr> <tr> <td> 🚄 Speed Comparison of Fold to other libraries </td> <td>Walkthrough</td> <td>Weather</td> <td> <a href='https://dream-faster.github.io/fold/walkthroughs/benchmarking_sktime_fold/' target="_blank"> Notebook </a> </td> <td> <a href='https://colab.research.google.com/drive/1iLXpty-j1kpDCzLM4fCsP3fLoS_DFN1C?usp=sharing' target="_blank"> Colab </a> </td> </tr> <tr> <td> 📚 Example Collection </td> <td>Example</td> <td>Weather & Synthetic</td> <td> <a href='https://dream-faster.github.io/fold/generated/gallery/' target="_blank"> Collection Link </a> </td> <td> - </td> </tr> <tr> <td> 🖋️ Why we ended up building an Adaptive ML engine for Time Series </td> <td>Blog</td> <td>Public Release Blog Post </td> <td> <a href='https://www.appliedexploration.com/p/back-to-the-future-with-time-series' target="_blank"> Blog post on Applied Exploration </a> </td> <td> - </td> </tr> </table> <br/> ## Core Features - Supports both Regression and Classification tasks. - Online and Mini-batch learning. - Feature selection and other transformations on an expanding/rolling window basis - Use any scikit-learn/tabular model natively! - Use any univariate or sequence models (wrappers provided in [fold-wrappers](https://github.com/dream-faster/fold-wrappers)). - Use any Deep Learning Time Series models (wrappers provided in [fold-wrappers](https://github.com/dream-faster/fold-wrappers)). - Super easy syntax! - Probabilistic foreacasts (currently, for Classification, full support coming in April). - Hyperparemeter optimization / Model selection. (coming in early April!) ## What is Adaptive Backtesting? ![Adaptive Backtesting](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/technical_diagrams/continous_validation.svg) It's like classical Backtesting / Time Series Cross-Validation, plus: Inside a test window, and during deployment, fold provides a way for models to update their parameters or access the last value. [Learn more](https://dream-faster.github.io/fold/concepts/adaptive-ml/) ## Our Open-core Time Series Toolkit [![Krisi](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/overview_diagrams/dream_faster_suite_krisi.svg)](https://github.com/dream-faster/krisi) [![Fold](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/overview_diagrams/dream_faster_suite_fold.svg)](https://github.com/dream-faster/fold) [![Fold/Models](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/overview_diagrams/dream_faster_suite_fold_models.svg)](https://github.com/dream-faster/fold-models) [![Fold/Wrappers](https://raw.githubusercontent.com/dream-faster/fold/main/docs/images/overview_diagrams/dream_faster_suite_fold_wrappers.svg)](https://github.com/dream-faster/fold-wrappers) If you want to try them out, we'd love to hear about your use case and help, [please book a free 30-min call with us](https://calendly.com/nowcasting/consultation)! [Explore our Commercial License options here](https://dream-faster.github.io/fold/product/pricing) ## Contribution Join our <a style="margin:2px" href="https://discord.gg/EKJQgfuBpE"><img alt="Discord Community" src="https://img.shields.io/badge/Discord-%235865F2.svg?logo=discord&logoColor=white"></a> for live discussion! Submit an issue or reach out to us on info at dream-faster.ai for any inquiries. ## Licence & Usage We want to **bring much-needed transparency, speed and rigour** to the process of creating Time Series ML pipelines, while also building a sustainable business, that can support the ecosystem in the long-term. Fold's licence is inbetween [source-available](https://en.wikipedia.org/wiki/Source-available_software) and a traditional commercial software licence. It requires a paid licence for any commercial use, after the initial, 30 day trial period. We also want to contribute to open research by giving free access to non-commercial, research use of `fold`. [Read more](https://dream-faster.github.io/fold/product/license/) ## Limitations - No intermittent time series support, very limited support for missing values. - No hierarchical time series support.


نیازمندی

مقدار نام
>=1.2 pandas
>=1.16 numpy
>=0.22 scikit-learn
>=4.0 tqdm
>=0.11 iteration_utilities
>=22.12.0,<22.13.0 black
>=4.0.1,<4.1.0 flake8
>=5.10.1,<5.11.0 isort
>=2.20.0,<2.21.0 pre-commit
>=7.1.2,<7.2.0 pytest
>=4.0 pytest-cov
>=0.7.0 imbalanced-learn
>=0.10 holidays
>=0.0.8,<0.1.0 krisi
>=1.2 mkdocs
>=9.0.0 mkdocs-material
>=0.9.0 mkdocstrings-python
>=4.0 mkdocs-include-markdown-plugin
>=0.4 mkdocs-autorefs
>=0.22 mkdocs-jupyter
>=1.5.33 image
>=0.7 mkdocs-gallery
<=0.3.2 mkdocs-glightbox
>=1.4 ray
>=0.1.2,<0.2.0 fold-models
>=0.1,<1.0 fold-wrappers


زبان مورد نیاز

مقدار نام
>=3.7,<4.0 Python


نحوه نصب


نصب پکیج whl fold-core-0.1.8:

    pip install fold-core-0.1.8.whl


نصب پکیج tar.gz fold-core-0.1.8:

    pip install fold-core-0.1.8.tar.gz