معرفی شرکت ها


fmskill-0.8.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Compare results from MIKE simulations with observations.
ویژگی مقدار
سیستم عامل -
نام فایل fmskill-0.8.0
نام fmskill
نسخه کتابخانه 0.8.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jesper Sandvig Mariegaard
ایمیل نویسنده jem@dhigroup.com
آدرس صفحه اصلی https://github.com/DHI/fmskill
آدرس اینترنتی https://pypi.org/project/fmskill/
مجوز MIT
<img src="https://raw.githubusercontent.com/DHI/fmskill/main/images/logo/mike-fm-skill-rgb.svg" width="300"> # FMskill: Compare MIKE FM results with observations. ![Python version](https://img.shields.io/pypi/pyversions/fmskill.svg) ![Python package](https://github.com/DHI/fmskill/actions/workflows/full_test.yml/badge.svg) [![PyPI version](https://badge.fury.io/py/fmskill.svg)](https://badge.fury.io/py/fmskill) [FMskill](https://github.com/DHI/fmskill) is a python package for scoring [MIKE FM](https://www.mikepoweredbydhi.com/products/mike-21-3) models. Read more about the [vision and scope](https://dhi.github.io/fmskill/vision.html). Contribute with new ideas in the [discussion](https://github.com/DHI/fmskill/discussions), report an [issue](https://github.com/DHI/fmskill/issues) or browse the [API documentation](https://dhi.github.io/fmskill/api.html). Access observational data (e.g. altimetry data) from the sister library [WatObs](https://github.com/DHI/watobs). ## Use cases [FMskill](https://github.com/DHI/fmskill) would like to be your companion during the different phases of a MIKE FM modelling workflow. * Model setup - exploratory phase * Model calibration * Model validation and reporting - communicate your final results ## Installation From [pypi](https://pypi.org/project/fmskill/): `> pip install fmskill` Or the development version: `> pip install https://github.com/DHI/fmskill/archive/main.zip` ## Example notebooks * [Quick_and_dirty_compare.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/Quick_and_dirty_compare.ipynb) * [SW_DutchCoast.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/SW_DutchCoast.ipynb) * [Multi_model_comparison.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/Multi_model_comparison.ipynb) * [Multi_variable_comparison.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/Multi_variable_comparison.ipynb) * [Track_comparison.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/Track_comparison.ipynb) (including global wave model example) * [Spatial_skill.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/Spatial_skill.ipynb) (satellite tracks, skill aggregated on spatial bins) * [NetCDF_ModelResult.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/NetCDF_ModelResult.ipynb) * [Combine_comparers.ipynb](https://nbviewer.jupyter.org/github/DHI/fmskill/blob/main/notebooks/Combine_comparers.ipynb) ## Workflow 1. Define **ModelResults** 2. Define **Observations** 3. **Connect** Observations and ModelResults 4. **Extract** ModelResults at Observation positions 5. Do plotting, statistics, reporting using a **Comparer** Read more about the workflow in the [getting started guide](https://dhi.github.io/fmskill/getting_started.html). ## Example of use Start by defining model results and observations: ```python >>> from fmskill.model import ModelResult >>> from fmskill.observation import PointObservation, TrackObservation >>> mr = ModelResult("HKZN_local_2017_DutchCoast.dfsu", name="HKZN_local", item=0) >>> HKNA = PointObservation("HKNA_Hm0.dfs0", item=0, x=4.2420, y=52.6887, name="HKNA") >>> EPL = PointObservation("eur_Hm0.dfs0", item=0, x=3.2760, y=51.9990, name="EPL") >>> c2 = TrackObservation("Alti_c2_Dutch.dfs0", item=3, name="c2") ``` Then, connect observations and model results, and extract data at observation points: ```python >>> from fmskill import Connector >>> con = Connector([HKNA, EPL, c2], mr) >>> comparer = con.extract() ``` With the comparer, all sorts of skill assessments and plots can be made: ```python >>> comparer.skill().round(2) n bias rmse urmse mae cc si r2 observation HKNA 385 -0.20 0.35 0.29 0.25 0.97 0.09 0.99 EPL 66 -0.08 0.22 0.20 0.18 0.97 0.07 0.99 c2 113 -0.00 0.35 0.35 0.29 0.97 0.12 0.99 ``` ### Overview of observation locations ```python con.plot_observation_positions(figsize=(7,7)) ``` ![map](https://raw.githubusercontent.com/DHI/fmskill/main/images/map.png) ### Scatter plot ```python comparer.scatter() ``` ![scatter](https://raw.githubusercontent.com/DHI/fmskill/main/images/scatter.png) ### Timeseries plot Timeseries plots can either be static and report-friendly ([matplotlib](https://matplotlib.org/)) or interactive with zoom functionality ([plotly](https://plotly.com/python/)). ```python comparer["HKNA"].plot_timeseries(width=1000, backend="plotly") ``` ![timeseries](https://raw.githubusercontent.com/DHI/fmskill/main/images/plotly_timeseries.png) ## Automated reporting With a few lines of code, it will be possible to generate an automated report. ```python from fmskill.report import Reporter rep = Reporter(mr) rep.to_markdown() ``` [Very basic first example report](https://github.com/DHI/fmskill/blob/main/notebooks/HKZN_local/HKZN_local.md)


نیازمندی

مقدار نام
- numpy
- pandas
>=1.2 mikeio
- matplotlib
- xarray
- markdown
- jinja2
- pytest
==4.5.0 sphinx
- sphinx-book-theme
==22.3.0 black
>=4.5 plotly
- nbformat
- nbconvert
- jupyter
- plotly
- shapely
- pytest
- netCDF4
- openpyxl
- dask


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl fmskill-0.8.0:

    pip install fmskill-0.8.0.whl


نصب پکیج tar.gz fmskill-0.8.0:

    pip install fmskill-0.8.0.tar.gz