معرفی شرکت ها


fluent-logger-0.9.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python logging handler for Fluentd event collector
ویژگی مقدار
سیستم عامل -
نام فایل fluent-logger-0.9.6
نام fluent-logger
نسخه کتابخانه 0.9.6
نگهدارنده ['Arcadiy Ivanov']
ایمیل نگهدارنده ['arcadiy@ivanov.biz']
نویسنده Kazuki Ohta
ایمیل نویسنده kazuki.ohta@gmail.com
آدرس صفحه اصلی https://github.com/fluent/fluent-logger-python
آدرس اینترنتی https://pypi.org/project/fluent-logger/
مجوز Apache License, Version 2.0
A Python structured logger for Fluentd ====================================== .. image:: https://travis-ci.org/fluent/fluent-logger-python.svg?branch=master :target: https://travis-ci.org/fluent/fluent-logger-python :alt: Build Status .. image:: https://coveralls.io/repos/fluent/fluent-logger-python/badge.svg :target: https://coveralls.io/r/fluent/fluent-logger-python :alt: Coverage Status Many web/mobile applications generate huge amount of event logs (c,f. login, logout, purchase, follow, etc). To analyze these event logs could be really valuable for improving the service. However, the challenge is collecting these logs easily and reliably. `Fluentd <https://github.com/fluent/fluentd>`__ solves that problem by having: easy installation, small footprint, plugins, reliable buffering, log forwarding, etc. **fluent-logger-python** is a Python library, to record the events from Python application. Requirements ------------ - Python 3.5+ - ``msgpack`` - **IMPORTANT**: Version 0.8.0 is the last version supporting Python 2.6, 3.2 and 3.3 - **IMPORTANT**: Version 0.9.6 is the last version supporting Python 2.7 and 3.4 Installation ------------ This library is distributed as 'fluent-logger' python package. Please execute the following command to install it. .. code:: sh $ pip install fluent-logger Configuration ------------- Fluentd daemon must be launched with a tcp source configuration: :: <source> type forward port 24224 </source> To quickly test your setup, add a matcher that logs to the stdout: :: <match app.**> type stdout </match> Usage ----- FluentSender Interface ~~~~~~~~~~~~~~~~~~~~~~ `sender.FluentSender` is a structured event logger for Fluentd. By default, the logger assumes fluentd daemon is launched locally. You can also specify remote logger by passing the options. .. code:: python from fluent import sender # for local fluent logger = sender.FluentSender('app') # for remote fluent logger = sender.FluentSender('app', host='host', port=24224) For sending event, call `emit` method with your event. Following example will send the event to fluentd, with tag 'app.follow' and the attributes 'from' and 'to'. .. code:: python # Use current time logger.emit('follow', {'from': 'userA', 'to': 'userB'}) # Specify optional time cur_time = int(time.time()) logger.emit_with_time('follow', cur_time, {'from': 'userA', 'to':'userB'}) To send events with nanosecond-precision timestamps (Fluent 0.14 and up), specify `nanosecond_precision` on `FluentSender`. .. code:: python # Use nanosecond logger = sender.FluentSender('app', nanosecond_precision=True) logger.emit('follow', {'from': 'userA', 'to': 'userB'}) logger.emit_with_time('follow', time.time(), {'from': 'userA', 'to': 'userB'}) You can detect an error via return value of `emit`. If an error happens in `emit`, `emit` returns `False` and get an error object using `last_error` method. .. code:: python if not logger.emit('follow', {'from': 'userA', 'to': 'userB'}): print(logger.last_error) logger.clear_last_error() # clear stored error after handled errors If you want to shutdown the client, call `close()` method. .. code:: python logger.close() Event-Based Interface ~~~~~~~~~~~~~~~~~~~~~ This API is a wrapper for `sender.FluentSender`. First, you need to call ``sender.setup()`` to create global `sender.FluentSender` logger instance. This call needs to be called only once, at the beginning of the application for example. Initialization code of Event-Based API is below: .. code:: python from fluent import sender # for local fluent sender.setup('app') # for remote fluent sender.setup('app', host='host', port=24224) Then, please create the events like this. This will send the event to fluentd, with tag 'app.follow' and the attributes 'from' and 'to'. .. code:: python from fluent import event # send event to fluentd, with 'app.follow' tag event.Event('follow', { 'from': 'userA', 'to': 'userB' }) `event.Event` has one limitation which can't return success/failure result. Other methods for Event-Based Interface. .. code:: python sender.get_global_sender # get instance of global sender sender.close # Call FluentSender#close Handler for buffer overflow ~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can inject your own custom proc to handle buffer overflow in the event of connection failure. This will mitigate the loss of data instead of simply throwing data away. .. code:: python import msgpack from io import BytesIO def overflow_handler(pendings): unpacker = msgpack.Unpacker(BytesIO(pendings)) for unpacked in unpacker: print(unpacked) logger = sender.FluentSender('app', host='host', port=24224, buffer_overflow_handler=overflow_handler) You should handle any exception in handler. fluent-logger ignores exceptions from ``buffer_overflow_handler``. This handler is also called when pending events exist during `close()`. Python logging.Handler interface ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This client-library also has ``FluentHandler`` class for Python logging module. .. code:: python import logging from fluent import handler custom_format = { 'host': '%(hostname)s', 'where': '%(module)s.%(funcName)s', 'type': '%(levelname)s', 'stack_trace': '%(exc_text)s' } logging.basicConfig(level=logging.INFO) l = logging.getLogger('fluent.test') h = handler.FluentHandler('app.follow', host='host', port=24224, buffer_overflow_handler=overflow_handler) formatter = handler.FluentRecordFormatter(custom_format) h.setFormatter(formatter) l.addHandler(h) l.info({ 'from': 'userA', 'to': 'userB' }) l.info('{"from": "userC", "to": "userD"}') l.info("This log entry will be logged with the additional key: 'message'.") You can also customize formatter via logging.config.dictConfig .. code:: python import logging.config import yaml with open('logging.yaml') as fd: conf = yaml.load(fd) logging.config.dictConfig(conf['logging']) You can inject your own custom proc to handle buffer overflow in the event of connection failure. This will mitigate the loss of data instead of simply throwing data away. .. code:: python import msgpack from io import BytesIO def overflow_handler(pendings): unpacker = msgpack.Unpacker(BytesIO(pendings)) for unpacked in unpacker: print(unpacked) A sample configuration ``logging.yaml`` would be: .. code:: python logging: version: 1 formatters: brief: format: '%(message)s' default: format: '%(asctime)s %(levelname)-8s %(name)-15s %(message)s' datefmt: '%Y-%m-%d %H:%M:%S' fluent_fmt: '()': fluent.handler.FluentRecordFormatter format: level: '%(levelname)s' hostname: '%(hostname)s' where: '%(module)s.%(funcName)s' handlers: console: class : logging.StreamHandler level: DEBUG formatter: default stream: ext://sys.stdout fluent: class: fluent.handler.FluentHandler host: localhost port: 24224 tag: test.logging buffer_overflow_handler: overflow_handler formatter: fluent_fmt level: DEBUG none: class: logging.NullHandler loggers: amqp: handlers: [none] propagate: False conf: handlers: [none] propagate: False '': # root logger handlers: [console, fluent] level: DEBUG propagate: False Asynchronous Communication ~~~~~~~~~~~~~~~~~~~~~~~~~~ Besides the regular interfaces - the event-based one provided by ``sender.FluentSender`` and the python logging one provided by ``handler.FluentHandler`` - there are also corresponding asynchronous versions in ``asyncsender`` and ``asynchandler`` respectively. These versions use a separate thread to handle the communication with the remote fluentd server. In this way the client of the library won't be blocked during the logging of the events, and won't risk going into timeout if the fluentd server becomes unreachable. Also it won't be slowed down by the network overhead. The interfaces in ``asyncsender`` and ``asynchandler`` are exactly the same as those in ``sender`` and ``handler``, so it's just a matter of importing from a different module. For instance, for the event-based interface: .. code:: python from fluent import asyncsender as sender # for local fluent sender.setup('app') # for remote fluent sender.setup('app', host='host', port=24224) # do your work ... # IMPORTANT: before program termination, close the sender sender.close() or for the python logging interface: .. code:: python import logging from fluent import asynchandler as handler custom_format = { 'host': '%(hostname)s', 'where': '%(module)s.%(funcName)s', 'type': '%(levelname)s', 'stack_trace': '%(exc_text)s' } logging.basicConfig(level=logging.INFO) l = logging.getLogger('fluent.test') h = handler.FluentHandler('app.follow', host='host', port=24224, buffer_overflow_handler=overflow_handler) formatter = handler.FluentRecordFormatter(custom_format) h.setFormatter(formatter) l.addHandler(h) l.info({ 'from': 'userA', 'to': 'userB' }) l.info('{"from": "userC", "to": "userD"}') l.info("This log entry will be logged with the additional key: 'message'.") ... # IMPORTANT: before program termination, close the handler h.close() **NOTE**: please note that it's important to close the sender or the handler at program termination. This will make sure the communication thread terminates and it's joined correctly. Otherwise the program won't exit, waiting for the thread, unless forcibly killed. Circular queue mode +++++++++++++++++++ In some applications it can be especially important to guarantee that the logging process won't block under *any* circumstance, even when it's logging faster than the sending thread could handle (*backpressure*). In this case it's possible to enable the `circular queue` mode, by passing `True` in the `queue_circular` parameter of ``asyncsender.FluentSender`` or ``asynchandler.FluentHandler``. By doing so the thread doing the logging won't block even when the queue is full, the new event will be added to the queue by discarding the oldest one. **WARNING**: setting `queue_circular` to `True` will cause loss of events if the queue fills up completely! Make sure that this doesn't happen, or it's acceptable for your application. Testing ------- Testing can be done using `nose <https://nose.readthedocs.org/en/latest/>`__. Release ------- Need wheel package. .. code:: sh $ pip install wheel After that, type following command: .. code:: sh $ python setup.py clean sdist bdist_wheel upload Contributors ------------ Patches contributed by `those people <https://github.com/fluent/fluent-logger-python/contributors>`__. License ------- Apache License, Version 2.0


نیازمندی

مقدار نام
>1.0 msgpack


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl fluent-logger-0.9.6:

    pip install fluent-logger-0.9.6.whl


نصب پکیج tar.gz fluent-logger-0.9.6:

    pip install fluent-logger-0.9.6.tar.gz