معرفی شرکت ها


flexidep-0.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Managing dependencies for other python packages, especially when multiple alternatives exist for the same module.
ویژگی مقدار
سیستم عامل -
نام فایل flexidep-0.0.6
نام flexidep
نسخه کتابخانه 0.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Francesco Santini
ایمیل نویسنده francesco.santini@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/flexidep/
مجوز Apache License 2.0
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/flexidep) [![PyPI version](https://badge.fury.io/py/flexidep.svg)](https://badge.fury.io/py/flexidep) ![GitHub](https://img.shields.io/github/license/fsantini/python-dependency-manager) # Flexidep Package to manage optional and alternate dependencies in python packages. This package checks for dependencies at runtime and provides an interface to install them. It supports multiple alternatives, so that the user can choose which package to install. Choice for pip and conda are provided. ## Usage This package is intended to be configured using a cfg file (similar to setup.cfg) and to be called at runtime during the initialization of the containing module or program, before any import is done. It reads all the modules that are required and tries to install them. The installation can either be interactive or automatic, depending on the intended usage. For the interactive installation, a command-line interface or a GUI based on tk are provided. ### Integration in your code ```python from flexidep import DependencyManager, SetupFailedError, OperationCanceledError dm = DependencyManager() dm.load_file('test.cfg') try: dm.install_interactive(force_optional=True) except OperationCanceledError: print('Installation canceled') except SetupFailedError: print('Setup failed') ``` A `DependencyManager` object is created with the following parameters: ```python DependencyManager( config_file=None, config_string=None, unique_id=None, interactive_initialization=True, use_gui=False, install_local=False, package_manager=PackageManagers.pip, extra_command_line='', ) ``` * `config_file`: path to the configuration file. It can be a string, a Path-like object or a file-like object. **Note**: all configuration options in a config file supersede the options specified in the constructor. * `config_string`: string containing the configuration in config file format. If both `config_file` and `config_string` are provided, the file is used. * `unique_id`: unique identifier for the project. It is used to store the configuration in the user's home directory. * `interactive_initialization`: if True, the user is asked to choose the global installation parameters. * `use_gui`: if True, a GUI is used for the interactive installation. * `install_local`: if True, the packages are installed locally in the current environment (`--user` flag to pip) * `package_manager`: package manager to use. Can be `PackageManagers.pip` or `PackageManagers.conda`. * `extra_command_line`: extra command line arguments to pass to the package manager. The main functions that are used are: * `load_file(file)` to load the configuration file. `file` can be a file name, a file object, or a path-like object. * `install_interactive(force_optional)` to install the dependencies in interactive mode. If force_optional is false, optional dependencies will only be asked once and the choice will be remembered. If it is true, the choices are cleared and the optional dependencies are asked again. * `install_auto(install_optional)` to install the dependencies in automatic mode. If install_optional is true, optional dependencies are installed too, otherwise only the required ones are. #### Utility functions The following functions are provided for convenience: * `is_conda()` returns True if the current environment is a conda environment. * `is_frozen()` returns True if the current environment is frozen (e.g. using pyinstaller). ### Configuration file A typical configuration file is the following: ```ini [Global] # Whether to let the user specify the global options (e.g. pip or conda) interactive initialization = True # Whether to use the tk gui or not use gui = True # Whether to pass the --user flag to pip local install = False # Which package manager to use (pip and conda are currently supported) package manager = pip # A unique identifier for the app that calls the package # (used to store the optional package choices) id = com.myname.myproject # a list (comma or newline-separated) of packages that are optional. # The default status of a package is required optional packages = tensorflow # Defines a priority order for the packages to be installed priority = my_pip_package, tensorflow # Here you can specify which packages should be uninstalled because they conflict with this package uninstall = conflict_package # package-manager-specific packages can be defined like this uninstall.pip = conflict_package_pip uninstall.conda = conflict_package_conda # This section contains list of packages to be installed. # The name of each entry is the name of the *module* that the package provides. # For example, tensorflow-gpu and tensorflow-cpu both provide the tensorflow module. # The name of the entry is therefore "tensorflow". # After the name, the list of packages is given, separated by newlines. # Environment markers can also be provided, so that the user is only presented with options # that are compatible with the current environment. [Packages] tensorflow = tensorflow_gpu ; sys_platform != 'darwin' tensorflow_cpu ; sys_platform != 'darwin' tensorflow_metal ; sys_platform == 'darwin' tensorflow_macos ; sys_platform == 'darwin' # dependencies and conflicts can be specified for each alternative # this is useful if this package automatically installs something that # is unwanted with the rest of the package. package_with_dependencies = package_1 +install_before_package1 +install_before_package2 -uninstall_before_package --uninstall_after_package ++install_after_package [Pip] # pip-specific packages. These packages will only be installed if pip is used as a manager. my_pip_package = pip_package_1 pip_package_2 [Conda] # conda-specific packages ``


نیازمندی

مقدار نام
- packaging
- appdirs


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl flexidep-0.0.6:

    pip install flexidep-0.0.6.whl


نصب پکیج tar.gz flexidep-0.0.6:

    pip install flexidep-0.0.6.tar.gz