معرفی شرکت ها


fletcher-0.7.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Pandas ExtensionDType/Array backed by Apache Arrow
ویژگی مقدار
سیستم عامل -
نام فایل fletcher-0.7.2
نام fletcher
نسخه کتابخانه 0.7.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Uwe L. Korn
ایمیل نویسنده fletcher@uwekorn.com
آدرس صفحه اصلی https://github.com/xhochy/fletcher
آدرس اینترنتی https://pypi.org/project/fletcher/
مجوز MIT
# fletcher ![CI](https://github.com/xhochy/fletcher/workflows/CI/badge.svg) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/xhochy/fletcher/master) A library that provides a generic set of Pandas ExtensionDType/Array implementations backed by Apache Arrow. They support a wider range of types than Pandas natively supports and also bring a different set of constraints and behaviours that are beneficial in many situations. ## Usage To use `fletcher` in Pandas DataFrames, all you need to do is to wrap your data in a `FletcherChunkedArray` or `FletcherContinuousArray` object. Your data can be of either `pyarrow.Array`, `pyarrow.ChunkedArray` or a type that can be passed to `pyarrow.array(…)`. ``` import fletcher as fr import pandas as pd df = pd.DataFrame({ 'str_chunked': fr.FletcherChunkedArray(['a', 'b', 'c']), 'str_continuous': fr.FletcherContinuousArray(['a', 'b', 'c']), }) df.info() # <class 'pandas.core.frame.DataFrame'> # RangeIndex: 3 entries, 0 to 2 # Data columns (total 2 columns): # # Column Non-Null Count Dtype # --- ------ -------------- ----- # 0 str_chunked 3 non-null fletcher_chunked[string] # 1 str_continuous 3 non-null fletcher_continuous[string] # dtypes: fletcher_chunked[string](1), fletcher_continuous[string](1) # memory usage: 166.0 bytes ``` ## Development While you can use `fletcher` in pip-based environments, we strongly recommend using a `conda` based development setup with packages from `conda-forge`. ``` # Create the conda environment with all necessary dependencies conda env create # Activate the newly created environment conda activate fletcher # Install fletcher into the current environment python -m pip install -e . --no-build-isolation --no-use-pep517 # Run the unit tests (you should do this several times during development) py.test -nauto # Install pre-commit hooks # These will then be automatically run on every commit and ensure that files # are black formatted, have no flake8 issues and mypy checks the type consistency. pre-commit install ``` Code formatting is done using black. This should keep everything in a consistent styling and the formatting is automatically adjusted via the pre-commit hooks. ### Using pandas in development mode To test and develop against pandas' master or your local fixes, you can install a development version of pandas using: ``` git clone https://github.com/pandas-dev/pandas cd pandas # Install additional pandas dependencies conda install -y cython # Build and install pandas python setup.py build_ext --inplace -j 4 python -m pip install -e . --no-build-isolation --no-use-pep517 ``` This links the development version of `pandas` into your `fletcher` conda environment. If you change any Python code in pandas, it is directly reflected in your environment. If you change any Cython code in pandas, you need to re-execute `python setup.py build_ext --inplace -j 4`. ### Using (py)arrow nightlies To test and develop against the latest development version of Apache Arrow (`pyarrow`), you can install it from the `arrow-nightlies` conda channel: ``` conda install -c arrow-nightlies arrow-cpp pyarrow ``` ### Benchmarks In `benchmarks/` we provide a set of benchmarks to compare the performance of `fletcher` against `pandas` and ensure that `fletcher` itself stays performant. The benchmarks are written using [airspeed velocity](https://asv.readthedocs.io/en/stable/). When developing the benchmarks you can run them using `asv dev` (use `-b <pattern>` to only run a selection of them) only once. To get real benchmark values, you should use `asv run --python=same` to run the benchmarks multiple times and get meaningful average runtimes.


نیازمندی

مقدار نام
>=1.0 pandas
>=0.17.0 pyarrow
>=0.49 numba
- six


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl fletcher-0.7.2:

    pip install fletcher-0.7.2.whl


نصب پکیج tar.gz fletcher-0.7.2:

    pip install fletcher-0.7.2.tar.gz