معرفی شرکت ها


flask-pydantic-api-0.9.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Pydantic based API support for Flask
ویژگی مقدار
سیستم عامل -
نام فایل flask-pydantic-api-0.9.3
نام flask-pydantic-api
نسخه کتابخانه 0.9.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Adam Sussman
ایمیل نویسنده adam.sussman@gmail.com
آدرس صفحه اصلی https://github.com/adamsussman/flask-pydantic-api
آدرس اینترنتی https://pypi.org/project/flask-pydantic-api/
مجوز MIT
# Flask Pydantic API A wrapper for flask methods allowing them to use Pydantic argment and response types. ## Features 1. Use pydantic models for request data validation (post bodies and query strings) as well as for formatting responses 2. Type annotation driven on the view function instead of the decorator. 3. OpenAPI schema generation and documentation 4. Smart response fields and expansions using [pydantic-enhanced-serializer](https://github.com/adamsussman/pydantic-enhanced-serializer). 5. Fold path parameters into input Pydantic models 6. File Uploads into Pydantic model fields 7. Async views ## Installation ```console $ pip install flask-pydantic-api ``` With support for [pydantic-enhanced-serializer](https://github.com/adamsussman/pydantic-enhanced-serializer): ```console $ pip install flask-pydantic-api[serializer] ``` ## Basic Usage ```python from flask import Flask from flask_pydantic_api import pydantic_api from pydantic import BaseModel app = Flask("my_app") class RequestBody(BaseModel): field1: str field2: Optional[int] class ResponseBody(BaseModel): response_field1: str # GET with query string field1=...&field2=..., responding with json RequestBody @app.get("/api/something") @pydantic_api( name="Go get something", # Name of path operation in OpenAPI schema tags=["MyTag"], # OpenAPI tags ) def do_work(body: RequestBody) -> ResponseBody: return ResponseBody(....) # POST with body @app.post("/api/something_else") @pydantic_api( name="Go do something", # Name of path operation in OpenAPI schema tags=["MyTag"], # OpenAPI tags ) def do_work_post(body: RequestBody) -> ResponseBody: return ResponseBody(....) ``` ## OpenAPI This library will generate the openapi.json schema to go with your usage of `@pydantic_api`. An example view is provided to serve it using [RapiDoc](https://rapidocweb.com/), but you can use any other openapi viewer you wish. ```python from flask_pydantic_api import apidocs_views app = Flask("my_app") # GET /apidocs will render the rapidoc viewer # GET /apidocs/openapi.json will render the OpenAPI schema app.register_blueprint(apidocs_views.blueprint, url_prefix="/apidocs") ``` Note that you may wish to customize your schema results more than this module provides. In that case: ```python from flask_pydantic_api.openapi import get_openapi_schema @app.get("/path/openapi.json") def get_openapi_schema() -> str: # param Info: from openapi_schema_pydantic # returns: openapi_schema_pydantic.OpenAPI my_schema = get_openapi_schema(info) # customize my_schema as wanted... return make_response( ( my_schema.json(by_alias=True, exclude_none=True, indent=2), {"content-type": "application/json"}, ) ) ``` ## Configuration and Parameters `@pydantic_api` accepts the following parameters: * `name`: str - Name for this operation that will be used in the OpenAPI schema * `Tags`: List[str] - Tags that will be used for this operation in the OpenAPI schema * `success_status_code`: int = 200 - HTTP Status code that will be used on successful response * `merge_path_parameters`: bool = False - See [Path Parameter Folding](#patharguments) * `request_fields_name`: str = "fields" - If using `pydantic-enhanced-serialzer` this is the name of the request parameter that controls the fieldsets returned. See [Using the Enhanced Serializer](#serializer). * `maximum_expansion_depth`: int = 5 - If using `pydantic-enhanced-serialzer` this controls how deep expansions can go. See [Using the Enhanced Serializer](#serializer). Flask configuration: * `FLASK_PYDANTIC_API_RENDER_ERRORS`: bool = True. If true, pydantic validation errors will be rendered to json and returned as a normal response. If false, pydantic errors will yield a standard ValidationError exception. * `FLASK_PYDANTIC_API_ERROR_STATUS_CODE`: int = 400. If `FLASK_PYDANTIC_API_RENDER_ERRORS` is true, this is the HTTP status code that will be returned. <a name="patharguments"></a> ## Path Parameter Folding For paths that include parameters, you can request that the path parameters be moved into the pydantic object for the request body. In this case you will no longer need the parameter as an argument to your view function. * Use the `merge_path_parameters` argument to `@pydantic_api` to control this. * For this to work, a field of the same name must exist in the request body model ```python # Normally... class RequestBodyNormal(BaseModel): field1: str @app.post("/path/<path_param1>/whatever") @pydantic_api() def do_work(path_param1: str, body: RequestBody) -> Response: path_param1 = "whatever was in path" ... ``` ```python # With merging: class RequestBodyNormal(BaseModel): path_param1: str # path_param1 is now here INSTEAD of the do_work signature field1: str @app.post("/path/<path_param1>/whatever") @pydantic_api(merge_path_parameters=True) def do_work(body: RequestBody) -> Response: body.path_param1 # use this instead of the function arg ... ``` ## Response Object Flexibility When returning from an api view, you will typically instantiate a populated response model and return that. You can also return a dict, which will be cast into the response model. You can also return any other object that Flask can handle. ```python class MyResponseModel(BaseModel): field1: str field2: int # returning a model instance @app.get("/") @pydantic_api() def do_work() -> MyResponseModel: ... model = MyResponseModel(field1="foo", field2=1234) return model # Returning a dict that is expected to be compliant with MyResponseModel: # To make mypy happy, you need to indicate a dict return, but for the # OpenAPI schema to work, you also need to specify the model. Make # both happy with a Union return type. # # NOTE: if the dict fails validation with MyResponseModel, the result # will be a 500 server error @app.get("/") @pydantic_api() def do_work() -> Union[dict, MyResponseModel]: ... return { "field1": "foo", "field2": 1234, } # Return something that isn't a dict or a model. # What you get here depends on how Flask supports what you are returning. # If it isn't a dict or a model, @pydantic_api will just pass it through. @app.get("/") @pydantic_api() def do_work() -> SomthingElse: ... return SomethingElse() ``` ## Error Handling By default, errors on pydantic validations of inputs will return a 400 HTTP status code with a json response body that encodes the pydantic errors in its native format (loc, msg, etc). You can return a status code other than 400 by setting the flask config `FLASK_PYDANTIC_API_ERROR_STATUS_CODE`. If you want to handle the error differently (for example to customize the data structure of the errors), you can turn off the automatic error handling by settings the flask config `FLASK_PYDANTIC_API_RENDER_ERRORS` to `False`. When error handling is turned off, pydantic validation errors will throw the `pydantic.ValidationError` exception. You will need to handle that exception or else the server response will be a 500 server error. See [Flask Registering Error Handlers](https://flask.palletsprojects.com/en/2.2.x/errorhandling/#registering). **Response Validation Errors:** If pydantic validation fails on your response object, the error will never be serialized and returned in the response. This is because the client user cannot easily distinguish between the error happening on input or on your response. Response validation errors will throw an exception and yield a 500 server error. <a name="serializer"></a> ## Using the Enhanced Serializer This module supports [pydantic-enhanced-serializer](https://github.com/adamsussman/pydantic-enhanced-serializer). It will use it automatically if installed. The argument parameter used to select fields and expansions is `fields`. This can be customized with the `request_fields_name` parameter of `@pydantic_api`. You do not need to specify the `fields` parameter in your function arguments or request body model. The `fields` parameter may be in the query string or in the post body. It can be a list of strings or a string of field names separated by commas. The maxium expansion depth defaults to 5 and can be controlled with the `maximum_expansion_depth` parameter of `@pydantic_api` Example: ```python class MyResponse(BaseModel): field1: str field2: str class Config: fieldsets = [ default: ["field2"], ] @app.get("/something") @pydantic_api() def get_something() -> MyResponse: return MyResponse(field1="value1", field2="value2") ``` ```console curl http://localhost:8080/something?fields=field1,field2 curl http://localhost:8080/something?fields=field1&fields=field2 curl -X POST \ -H'Content-Type: application/json' \ -d '{"fields": ["field1", "field2"]} \ http://localhost:8080/something ``` See [Pydantic Enhanced Serializer](https://github.com/adamsussman/pydantic-enhanced-serializer) for more information. <a name="fileuploads"></a> ### File Uploads File uploading with `multipart/form-data` content into pydantic request models is supported and the usual required and type checks will be done. Multiple files can be uploaded in the same request so long as each has a distinct field name. ```python from pydantic import BaseModel from pydantic_api import UploadedFile, pydantic_api class MyRequest(BaseModel): photo: UploadedFile caption: str @app.post("/upload-photo" @pyantic_api() def upload_photo(body: MyRequest) -> MyResponse: binary_file_data = body.photo.read() # body.photo is werkzeug.datastructures.FileStorage object file_name = body.photo.filename ... ``` ```console curl -F photo=@some_file.jpg -F caption="A great picture!" http://localhsot:8080/upload-photo ``` ## License This project is licensed under the terms of the MIT license.


نیازمندی

مقدار نام
>=3.6 asgiref
>=2.2 flask
>=1.8 pydantic
>=1.2 openapi-schema-pydantic
- mypy
- black
- ipdb
- isort
- flake8
- flake8-bugbear
- flake8-debugger
- types-setuptools
- pydantic-enhanced-serializer
- pytest
- pytest-cov


نحوه نصب


نصب پکیج whl flask-pydantic-api-0.9.3:

    pip install flask-pydantic-api-0.9.3.whl


نصب پکیج tar.gz flask-pydantic-api-0.9.3:

    pip install flask-pydantic-api-0.9.3.tar.gz