معرفی شرکت ها


flashtext-2.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extract/Replaces keywords in sentences.
ویژگی مقدار
سیستم عامل -
نام فایل flashtext-2.7
نام flashtext
نسخه کتابخانه 2.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Vikash Singh
ایمیل نویسنده vikash.duliajan@gmail.com
آدرس صفحه اصلی http://github.com/vi3k6i5/flashtext
آدرس اینترنتی https://pypi.org/project/flashtext/
مجوز -
========= FlashText ========= .. image:: https://api.travis-ci.org/vi3k6i5/flashtext.svg?branch=master :target: https://travis-ci.org/vi3k6i5/flashtext :alt: Build Status .. image:: https://readthedocs.org/projects/flashtext/badge/?version=latest :target: http://flashtext.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://badge.fury.io/py/flashtext.svg :target: https://badge.fury.io/py/flashtext :alt: Version .. image:: https://coveralls.io/repos/github/vi3k6i5/flashtext/badge.svg?branch=master :target: https://coveralls.io/github/vi3k6i5/flashtext?branch=master :alt: Test coverage .. image:: https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000 :target: https://github.com/vi3k6i5/flashtext/blob/master/LICENSE :alt: license This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the `FlashText algorithm <https://arxiv.org/abs/1711.00046>`_. Installation ------------ :: $ pip install flashtext API doc ------- Documentation can be found at `FlashText Read the Docs <http://flashtext.readthedocs.io/>`_. Usage ----- Extract keywords >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> # keyword_processor.add_keyword(<unclean name>, <standardised name>) >>> keyword_processor.add_keyword('Big Apple', 'New York') >>> keyword_processor.add_keyword('Bay Area') >>> keywords_found = keyword_processor.extract_keywords('I love Big Apple and Bay Area.') >>> keywords_found >>> # ['New York', 'Bay Area'] Replace keywords >>> keyword_processor.add_keyword('New Delhi', 'NCR region') >>> new_sentence = keyword_processor.replace_keywords('I love Big Apple and new delhi.') >>> new_sentence >>> # 'I love New York and NCR region.' Case Sensitive example >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor(case_sensitive=True) >>> keyword_processor.add_keyword('Big Apple', 'New York') >>> keyword_processor.add_keyword('Bay Area') >>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.') >>> keywords_found >>> # ['Bay Area'] Span of keywords extracted >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('Big Apple', 'New York') >>> keyword_processor.add_keyword('Bay Area') >>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.', span_info=True) >>> keywords_found >>> # [('New York', 7, 16), ('Bay Area', 21, 29)] Get Extra information with keywords extracted >>> from flashtext import KeywordProcessor >>> kp = KeywordProcessor() >>> kp.add_keyword('Taj Mahal', ('Monument', 'Taj Mahal')) >>> kp.add_keyword('Delhi', ('Location', 'Delhi')) >>> kp.extract_keywords('Taj Mahal is in Delhi.') >>> # [('Monument', 'Taj Mahal'), ('Location', 'Delhi')] >>> # NOTE: replace_keywords feature won't work with this. No clean name for Keywords >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('Big Apple') >>> keyword_processor.add_keyword('Bay Area') >>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.') >>> keywords_found >>> # ['Big Apple', 'Bay Area'] Add Multiple Keywords simultaneously >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_dict = { >>> "java": ["java_2e", "java programing"], >>> "product management": ["PM", "product manager"] >>> } >>> # {'clean_name': ['list of unclean names']} >>> keyword_processor.add_keywords_from_dict(keyword_dict) >>> # Or add keywords from a list: >>> keyword_processor.add_keywords_from_list(["java", "python"]) >>> keyword_processor.extract_keywords('I am a product manager for a java_2e platform') >>> # output ['product management', 'java'] To Remove keywords >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_dict = { >>> "java": ["java_2e", "java programing"], >>> "product management": ["PM", "product manager"] >>> } >>> keyword_processor.add_keywords_from_dict(keyword_dict) >>> print(keyword_processor.extract_keywords('I am a product manager for a java_2e platform')) >>> # output ['product management', 'java'] >>> keyword_processor.remove_keyword('java_2e') >>> # you can also remove keywords from a list/ dictionary >>> keyword_processor.remove_keywords_from_dict({"product management": ["PM"]}) >>> keyword_processor.remove_keywords_from_list(["java programing"]) >>> keyword_processor.extract_keywords('I am a product manager for a java_2e platform') >>> # output ['product management'] To check Number of terms in KeywordProcessor >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_dict = { >>> "java": ["java_2e", "java programing"], >>> "product management": ["PM", "product manager"] >>> } >>> keyword_processor.add_keywords_from_dict(keyword_dict) >>> print(len(keyword_processor)) >>> # output 4 To check if term is present in KeywordProcessor >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('j2ee', 'Java') >>> 'j2ee' in keyword_processor >>> # output: True >>> keyword_processor.get_keyword('j2ee') >>> # output: Java >>> keyword_processor['colour'] = 'color' >>> keyword_processor['colour'] >>> # output: color Get all keywords in dictionary >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('j2ee', 'Java') >>> keyword_processor.add_keyword('colour', 'color') >>> keyword_processor.get_all_keywords() >>> # output: {'colour': 'color', 'j2ee': 'Java'} For detecting Word Boundary currently any character other than this `\\w` `[A-Za-z0-9_]` is considered a word boundary. To set or add characters as part of word characters >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('Big Apple') >>> print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.')) >>> # ['Big Apple'] >>> keyword_processor.add_non_word_boundary('/') >>> print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.')) >>> # [] Test ---- :: $ git clone https://github.com/vi3k6i5/flashtext $ cd flashtext $ pip install pytest $ python setup.py test Build Docs ---------- :: $ git clone https://github.com/vi3k6i5/flashtext $ cd flashtext/docs $ pip install sphinx $ make html $ # open _build/html/index.html in browser to view it locally Why not Regex? -------------- It's a custom algorithm based on `Aho-Corasick algorithm <https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm>`_ and `Trie Dictionary <https://en.wikipedia.org/wiki/Trie Dictionary>`_. .. image:: https://github.com/vi3k6i5/flashtext/raw/master/benchmark.png :target: https://twitter.com/RadimRehurek/status/904989624589803520 :alt: Benchmark Time taken by FlashText to find terms in comparison to Regex. .. image:: https://thepracticaldev.s3.amazonaws.com/i/xruf50n6z1r37ti8rd89.png Time taken by FlashText to replace terms in comparison to Regex. .. image:: https://thepracticaldev.s3.amazonaws.com/i/k44ghwp8o712dm58debj.png Link to code for benchmarking the `Find Feature <https://gist.github.com/vi3k6i5/604eefd92866d081cfa19f862224e4a0>`_ and `Replace Feature <https://gist.github.com/vi3k6i5/dc3335ee46ab9f650b19885e8ade6c7a>`_. The idea for this library came from the following `StackOverflow question <https://stackoverflow.com/questions/44178449/regex-replace-is-taking-time-for-millions-of-documents-how-to-make-it-faster>`_. Citation ---------- The original paper published on `FlashText algorithm <https://arxiv.org/abs/1711.00046>`_. :: @ARTICLE{2017arXiv171100046S, author = {{Singh}, V.}, title = "{Replace or Retrieve Keywords In Documents at Scale}", journal = {ArXiv e-prints}, archivePrefix = "arXiv", eprint = {1711.00046}, primaryClass = "cs.DS", keywords = {Computer Science - Data Structures and Algorithms}, year = 2017, month = oct, adsurl = {http://adsabs.harvard.edu/abs/2017arXiv171100046S}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} } The article published on `Medium freeCodeCamp <https://medium.freecodecamp.org/regex-was-taking-5-days-flashtext-does-it-in-15-minutes-55f04411025f>`_. Contribute ---------- - Issue Tracker: https://github.com/vi3k6i5/flashtext/issues - Source Code: https://github.com/vi3k6i5/flashtext/ License ------- The project is licensed under the MIT license.


نحوه نصب


نصب پکیج whl flashtext-2.7:

    pip install flashtext-2.7.whl


نصب پکیج tar.gz flashtext-2.7:

    pip install flashtext-2.7.tar.gz