معرفی شرکت ها


flange-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Autoload configuration from multiple sources, object registry, dpath access.
ویژگی مقدار
سیستم عامل -
نام فایل flange-1.0.1
نام flange
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده flashashen
ایمیل نویسنده flashashen@gmail.com
آدرس صفحه اصلی https://github.com/flashashen/flange
آدرس اینترنتی https://pypi.org/project/flange/
مجوز MIT
# Flange [![PyPI version](https://badge.fury.io/py/flange.svg)](https://badge.fury.io/py/flange) ![Python versions](https://img.shields.io/pypi/pyversions/flange.svg) ![MIT License](https://img.shields.io/github/license/flashashen/flange.svg) --------------------------------------------------------- Convenient configuration search and load with a model based object registry. *With bits of config you may already have lying around..* ``` yaml # somewhere in a config file .. my_logger: name: myapp level: DEBUG format: "%(asctime)s:%(levelname)s:%(name)s %(message)s" # somewhere in a different config file .. my_mssql_db: driver: mssql+pymssql name: dbname user: devuser pass: devpass host: dbhost.dev.corp port: '1111' desc: dev db args: {'login_timeout':6} # from env vars export my_mssql_db__pass=devpass ``` *you can do this..* ``` sh> python -c "from flange import cfg, dbengine; result = cfg.mget('my_mssql_db').execute('USE master SELECT @@version').first()[0]; cfg.mget('my_logger').debug(result)" 2018-03-09 15:49:55,726:DEBUG:myapp Microsoft SQL Server 2008 (SP4) - 10.0.6000.29 (X64) Sep 3 2014 04:11:34 Copyright (c) 1988-2008 Microsoft Corporation Enterprise Edition (64-bit) on Windows NT 6.1 <X64> (Build 7601: Service Pack 1) (VM) ``` **You want this if**: - You're tired of boilerplate configuration code in your python projects - You're tired of boilerplate logger setup in your python projects - You're tired of boilerplate data access setup in your python projects - You're tired of boilerplate *{{fill in the blank}}* setup in your python projects - you want to hack in the python console and don't remember where you put all your bits of config and credentials - You want to keep passwords separate from main config ## What it does - Automatically searches for and loads (configuration) data in various formats using [Anyconfig](https://github.com/ssato/python-anyconfig) - Merges configuration from various sources using Anyconfig - Pluggable, automatic object detection/creation from config data - Object registry with lazy init and cache - Convenient object access - Uses [dpath](https://github.com/akesterson/dpath-python) for matching keys in the config/data This is partially inspired by the Spring framework. On init, the main configuration object will search for a given set of file pattern at a given directory to a given depth for config data and will merge this data into a single configuration object. Additionally, an object registry is provided that can recognize patterns in the config data and return cached instances on demand of any type of object. Object initialization is automatic and lazy. Recognition of instances currently employs json schema to identify patterns and a python function is provided that serves as the factory function. The factory method can be given explicity in python or specified as url that resolves to a python function. The combination of a schema and a factory function along with a name are called a 'model'. ## Usage ##### Model - Logger This shows access to a logger object which is a built-in model of flange. The built-in logger json-schema looks like this: ``` { "type" : "object", "properties" : { 'name':{'type':'string'}, 'level': { "enum": ['CRITICAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG']}, 'format':{'type':'string'}, }, "required": ["name", "level"] } ``` the config looks like this (can appear anywhere in your config files): ``` { .. my_logger: name: myapp level: DEBUG format: "%(asctime)s:%(levelname)s %(message)s" } ``` the object is accessed with the obj(..) method given a [dpath](https://github.com/akesterson/dpath-python) expression like this: ``` In [1]: from flange import cfg In [2]: log = cfg.obj('**/my_logger') In [3]: log.debug('hello') 2018-03-09 14:08:17,261:DEBUG:myapp hello ``` if the key in the configuration is not known, then the instance can be fetched with just the model name *(provided there is only one instance)*: ``` In [4]: cfg.obj(model='logger').debug('hello') 2018-03-09 14:43:07,514:DEBUG:myapp hello ``` .. or just by specifying a value in the instance config with 'values' parameter: ``` In [5]: cfg.obj(values='myapp').debug('hello') 2018-03-09 14:42:50,785:DEBUG:myapp hello ``` .. or by specifying multiple values in the instance config with 'values' parameter: ``` In [6]: cfg.obj(values=['myapp','DEBUG']).debug('hello') 2018-03-09 14:51:36,742:DEBUG:myapp hello ``` Any combination of key, model, and values terms can be given to select a unique instance with the mget(..) method. the raw config can also be accessed with the value(..) method: ``` In [7]: cfg.value('**/my_logger') Out[7]: {'name', 'dshlog', 'level', 'DEBUG'), 'format', '%(asctime)s:%(levelname)s %(message)s'} ``` the file that contained the config can be found with the src(..) or uri(...) methods. The first returns an object that contains the contents, uri, and other information. The latter simple returns the uri of the config/data resource' ``` In [8]: cfg.src('**/my_logger') Out[8]: <Source uri=/Users/myname/some_config.yml root_path=None parser=yml error=None> In [9]: cfg.uri('**/my_logger') Out[9]: '/Users/panelson/.cmd.yml' ``` *Note: All of the access methods have versions with identical parameters that return a list of matches instead of a single match.* - obj, objs - value, values - src, srcs - uri, uris There is also a search(...) method that is similar to the values(...) method except that search(...) returns key,value pairs. ``` In [10]: cfg.search('**/my_logger') Out[10]: [(('vars', 'my_logger'), OrderedDict([('name', 'myapp'), ('level', 'DEBUG'), ('format', '%(asctime)s:%(levelname)s:%(name)s %(message)s')]))] ``` ##### Model - dbengine / sqlalchemy This is another example with the default settings. The loaded data is described with the info() method. The dbengine module is imported which automatically registers an sqlalchemy based model and searches for any configuration that is a valid/sufficient for a sqlalchemy engine. Note: sqlalchemy is an example built-in model. Any sort of model can be registered. **After the import of dbengine module, the 'dbengine' model and it's instances appear in the output.** ``` In [2]: from flange import cfg In [3]: cfg.info() models: logger instances: logger base dir: . search depth: 1 file include patterns: ['*.yml', '*cfg', '*settings', '*config', '*properties', '*props'] file exclude patterns: ['*.tar', '*.jar', '*.zip', '*.gz', '*.swp', 'node_modules', 'target', '.idea', '*.hide', '*save'] sources: None os_env shellvars /Users/myuser/.gitconfig yml /Users/myuser/config_example.yml yml /Users/myuser/.cmd.yml shellvars /Users/myuser/.ansible.cfg yml /Users/myuser/.flangetest.yml shellvars /Users/myuser/.bundle/config shellvars /Users/myuser/.git/config yml /Users/myuser/.nyttth/config.yml shellvars /Users/myuser/.plotly/.config shellvars /Users/myuser/.ScreamingFrogSEOSpider/spider.config shellvars /Users/myuser/.ssh/config shellvars /Users/myuser/.subversion/config shellvars /Users/myuser/airflow/airflow.cfg shellvars /Users/myuser/airflow/unittests.cfg yml /Users/myuser/Downloads/config_example.yml yml /Users/myuser/workspace/docker-compose-swarm.yml In [4]: from flange import dbengine In [5]: cfg.info() models: dbengine instances: testdb,db1 logger instances: logger base dir: . search depth: 1 file include patterns: ['*.yml', '*cfg', '*settings', '*config', '*properties', '*props'] file exclude patterns: ['*.tar', '*.jar', '*.zip', '*.gz', '*.swp', 'node_modules', 'target', '.idea', '*.hide', '*save'] sources: None os_env yml /Users/myuser/config_example.yml yml /Users/myuser/.cmd.yml shellvars /Users/myuser/.ansible.cfg yml /Users/myuser/.flangetest.yml shellvars /Users/myuser/.bundle/config yml /Users/myuser/.nyttth/config.yml shellvars /Users/myuser/.plotly/.config shellvars /Users/myuser/.ScreamingFrogSEOSpider/spider.config shellvars /Users/myuser/.ssh/config shellvars /Users/myuser/.subversion/config shellvars /Users/myuser/airflow/airflow.cfg shellvars /Users/myuser/airflow/unittests.cfg yml /Users/myuser/Downloads/config_example.yml yml /Users/myuser/workspace/docker-compose-swarm.yml In [6]: cfg.obj('**/db1') Out[6]: Engine(mssql+pymssql://corpdomain\corpuser:***@dbhost:1111/dbname?charset=utf8) ``` ## Plugins Here is how the dbengine (sqlalchemy) model is defined: ``` Python from . import cfg from sqlalchemy import create_engine dbengine_schema = { "type" : "object", "properties" : { 'driver':{'type':'string'}, 'name':{'type':'string'}, 'user':{'type':'string'}, 'pass':{'type':'string'}, 'port':{'type':'string'}, }, "required": ["driver", "name", "user", "pass"] } def dbengine_create_func(config): url_format_string = "{:s}://{:s}:{:s}@{:s}:{:s}/{:s}?charset=utf8" engine = create_engine(url_format_string.format( config['driver'], config['user'], config['pass'], config['host'], config['port'], config['name']), convert_unicode=True) return engine cfg.register_default_model( 'dbengine', model.Model('dbengine', model.Model.get_schema_validator(dbengine_schema), dbengine_create_func)) ``` The example above showed explicit registration from python. Plugin registration can also be accomplished with just configuration. Here is an example from the tests in this project. For this to work, a python factory function must exist in the python path, resolved via a local url *(see example for url format)*. This config must also appear somewhere in the loaded config data loaded by flange. With those caveats, The following is all that is required to register a custom model and start accessing instances: ``` config_with_plugin = { 'test_instance_key': { 'only_TestPlugin_would_match_this': 'some value' }, 'test_plugin_config_key': { 'type': 'FLANGE.TYPE.PLUGIN', 'schema': { 'type': 'object', 'properties':{ 'only_TestPlugin_would_match_this': {'type': 'string'} }, 'required': ['only_TestPlugin_would_match_this'] }, 'factory': 'python://flange.test.TestPlugin().get_instance' } } ``` ## Installation ``` pip install flange ```


نیازمندی

مقدار نام
>=0.9.0 anyconfig
>=5.4 PyYAML
>=3.* jsonschema
>=1.4.0 dpath


نحوه نصب


نصب پکیج whl flange-1.0.1:

    pip install flange-1.0.1.whl


نصب پکیج tar.gz flange-1.0.1:

    pip install flange-1.0.1.tar.gz