معرفی شرکت ها


flameplot-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

flameplot is a python package for the quantification of local similarity across two maps or embeddings.
ویژگی مقدار
سیستم عامل -
نام فایل flameplot-1.1.0
نام flameplot
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Erdogan Taskesen
ایمیل نویسنده erdogant@gmail.com
آدرس صفحه اصلی https://erdogant.github.io/flameplot
آدرس اینترنتی https://pypi.org/project/flameplot/
مجوز -
[![Python](https://img.shields.io/pypi/pyversions/flameplot)](https://img.shields.io/pypi/pyversions/flameplot) [![PyPI Version](https://img.shields.io/pypi/v/flameplot)](https://pypi.org/project/flameplot/) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/flameplot/blob/master/LICENSE) [![Github Forks](https://img.shields.io/github/forks/erdogant/flameplot.svg)](https://github.com/erdogant/flameplot/network) [![GitHub Open Issues](https://img.shields.io/github/issues/erdogant/flameplot.svg)](https://github.com/erdogant/flameplot/issues) [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Downloads](https://pepy.tech/badge/flameplot/month)](https://pepy.tech/project/flameplot/) [![Downloads](https://pepy.tech/badge/flameplot)](https://pepy.tech/project/flameplot) [![DOI](https://zenodo.org/badge/234703853.svg)](https://zenodo.org/badge/latestdoi/234703853) [![Sphinx](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/flameplot/) [![Medium](https://img.shields.io/badge/Medium-Blog-green)](https://erdogant.github.io/flameplot/pages/html/Documentation.html#medium-blog) <!---[![BuyMeCoffee](https://img.shields.io/badge/buymea-coffee-yellow.svg)](https://www.buymeacoffee.com/erdogant)--> <!---[![Coffee](https://img.shields.io/badge/coffee-black-grey.svg)](https://erdogant.github.io/donate/?currency=USD&amount=5)--> # Flameplot - Comparison of (high) dimensional embeddings. **⭐️ Star this repo if you like it ⭐️** ### Medium Blog Also checkout [The Similarity between t-SNE, UMAP, PCA, and Other Mappings](https://erdogant.github.io/flameplot/pages/html/Documentation.html#medium-blog) to get a structured overview and usage of ``flameplot``. # ### Method To compare the embedding of samples in two different maps, we propose a scale dependent similarity measure. For a pair of maps X and Y, we compare the sets of the, respectively, kx and ky nearest neighbours of each sample. We first define the variable rxij as the rank of the distance of sample j among all samples with respect to sample i, in map X. The nearest neighbor of sample i will have rank 1, the second nearest neighbor rank 2, etc. Analogously, ryij is the rank of sample j with respect to sample i in map Y. Now we define a score on the interval [0, 1], as (eq. 1) <p align="left"> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/eq1.png" width="450" /> </p> where the variable n is the total number of samples, and the indicator function is given by (eq. 2) <p align="left"> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/eq2.png" width="250" /> </p> The score sx,y(kx, ky) will have value 1 if, for each sample, all kx nearest neighbours in map X are also the ky nearest neighbours in map Y, or vice versa. Note that a local neighborhood of samples can be set on the minimum number of samples in the class. Alternatively, kxy can be also set on the average class size. ### Schematic overview Schematic overview to systematically compare local and global differences between two sample projections. For illustration we compare two input maps (x and y) in which each map contains n samples (step 1). The second step is the ranking of samples based on Euclidean distance. The ranks of map x are subsequently compared to the ranks of map y for kx and ky nearest neighbours (step 3). The overlap between ranks (step 4), is subsequently summarized in Score: Sx,y(kx,ky). <p align="left"> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/schematic_overview.png" width="350" /> </p> ### Functions in flameplot ```python scores = flameplot.compare(map1, map2) fig = flameplot.plot(scores) X,y = flameplot.import_example() fig = flameplot.scatter(Xcoord,Ycoord) ``` #### Install flameplot from PyPI ```bash pip install flameplot ``` #### Import flameplot package ```python import flameplot as flameplot ``` # ### [Documentation pages](https://erdogant.github.io/flameplot/) On the [documentation pages](https://erdogant.github.io/flameplot/) you can find detailed information about the working of the ``flameplot`` with examples. <hr> ### Examples # * [Example: Comparison between two maps follow the quantification of local similarity approach.](https://erdogant.github.io/flameplot/pages/html/Examples.html) <p align="left"> <a href="https://erdogant.github.io/flameplot/pages/html/Examples.html"> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/pca50_tsne.png" width="400" /> </a> </p> # * [Example: Comparison 2D embeddings: PCA vs tSNE](https://erdogant.github.io/flameplot/pages/html/Examples.html#comparison-2d-embeddings-pca-vs-tsne) <p align="left"> <a href="https://erdogant.github.io/flameplot/pages/html/Examples.html#comparison-2d-embeddings-pca-vs-tsne"> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/pca2_tsne.png" width="400" /> </a> </p> # * [Example: Comparison Random data vs. t-SNE](https://erdogant.github.io/flameplot/pages/html/Examples.html#comparison-random-data-vs-t-sne) <p align="left"> <a href="https://erdogant.github.io/flameplot/pages/html/Examples.html#comparison-random-data-vs-t-sne"> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/random_tsne.png" width="400" /> </a> </p> # * [Example: Scatterplots](https://erdogant.github.io/flameplot/pages/html/Examples.html#scatterplots) <p align="left"> <a href="https://erdogant.github.io/flameplot/pages/html/Examples.html#scatterplots"> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/scatter_pca.png" width="600" /> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/scatter_tsne.png" width="600" /> <img src="https://github.com/erdogant/flameplot/blob/master/docs/figs/scatter_random.png" width="600" /> </a> </p> <hr> <hr> ### Support This project needs some love! ❤️ You can help in various ways. * Become a Sponsor! * Star this repo at the github page. * Other contributions can be in the form of feature requests, idea discussions, reporting bugs, opening pull requests. * Read more why becoming an sponsor is important on the Sponsor Github Page. Cheers Mate. ## References * Taskesen, E. et al. Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics. Sci. Rep. 6, 24949 * https://static-content.springer.com/esm/art%3A10.1038%2Fsrep24949/MediaObjects/41598_2016_BFsrep24949_MOESM12_ESM.pdf * https://www.nature.com/articles/srep24949


نیازمندی

مقدار نام
- matplotlib
- numpy
- tqdm
- scipy
- imagesc
- scatterd
- requests


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl flameplot-1.1.0:

    pip install flameplot-1.1.0.whl


نصب پکیج tar.gz flameplot-1.1.0:

    pip install flameplot-1.1.0.tar.gz