معرفی شرکت ها


fit_neuron-0.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package for estimation and evaluation of neural models from patch clamp neural recordings.
ویژگی مقدار
سیستم عامل -
نام فایل fit_neuron-0.0.6
نام fit_neuron
نسخه کتابخانه 0.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nicolas D. Jimenez
ایمیل نویسنده nicodjimenez@gmail.com
آدرس صفحه اصلی http://pythonhosted.org/fit_neuron
آدرس اینترنتی https://pypi.org/project/fit_neuron/
مجوز Apache
============= fit_neuron ============= **fit_neuron** is an easy to use python package for the fast estimation of generalized integrate and fire neural models from patch clamp electrophysiological recordings. The optimization routines implements a fitting procedure described in [RB2005]_ and [MS2011]_. The package includes an easy to use interface similar to scikit-learn for fitting models to data and then making predictions with the fitted models. The routines used can estimate the models described in [RB2005]_, [MN2009]_, and [MS2011]_. As described in depth in the documentation, the subthreshold parameters are estimated using linear regression and the threshold parameters are estimated using maximum likelihood. The fitting routine is built for speed: it estimates neuron parameters for 10 seconds of data in about 50 seconds on a quad core Asus laptop. *fit_neuron* also contains efficient implementations of the following spike distance measures: Victor-Purpura [DA2003]_, van Rossum [VR2001]_, Schreiber [SS2003]_, and Gamma [RJ2008]_ which can be used to evaluate the accuracy of estimated models, as well as provide measures of synchrony between spike trains. :Date: 2013-12-28 :Version: 0.0.5 :Authors: - Nicolas D. Jimenez Links ---------- 1) **Pypi** The latest stable version is available to download at: https://pypi.python.org/pypi/fit_neuron. 2) **GitHub** The latest development version is available at: https://github.com/nicodjimenez/fit_neuron. All relevant contributions are welcome and fast review of pull requests is guaranteed. 3) **Documentation** Sphinx documentation for this package is available at: http://pythonhosted.org/fit_neuron/. Dependencies ------------- 1) **Numpy** The standard python module for matrix and vector computations: https://pypi.python.org/pypi/numpy. 2) **Scipy** The standard python module for statistical analysis: http://www.scipy.org/install.html. 3) **Matplotlib** The standard python module for data visualization: http://matplotlib.org/users/installing.html. Installation ----------------------- The fit_neuron package can be installed as follows:: sudo pip install fit_neuron The data for the fit_neuron package is then installed as follows:: sudo python -m fit_neuron.data.dl_neuron_data .. warning:: Running this script for the first time will download a 300 MB zip file containing test recordings which is then unzipped to over 1 GB of text files in the installation directory of the *fit_neuron* package. This may take up to 20 minutes depending on your bandwidth. After the files are downloaded, the test data will be easily accessible via the *fit_neuron.data* package. Testing ------------ There are two testing scripts that may be used. Both scripts are described in the documentation (http://pythonhosted.org/fit_neuron/). The first script is far simpler and easier to understand but is less configurable:: python -m fit_neuron.tests.test_model The more complicated and configurable testing script for fit_neuron can be run as follows:: python -m fit_neuron.tests.test This will create a directory called *test_output_figures* in the current directory. Feel free to contact me at nicodjimenez [at] gmail.com if you have any questions / comments. References ------------------ .. [RB2005] Brette, Romain, and Wulfram Gerstner. "Adaptive exponential integrate-and-fire model as an effective description of neuronal activity." Journal of neurophysiology 94.5 (2005): 3637-3642. .. [MN2009] Mihalas, Stefan, and Ernst Niebur. "A generalized linear integrate-and-fire neural model produces diverse spiking behaviors." Neural computation 21.3 (2009): 704-718. .. [MS2011] Mensi, Skander, et al. "Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms." Journal of neurophysiology 107.6 (2012): 1756-1775. .. [RJ2008] Jolivet, Renaud, et al. "A benchmark test for a quantitative assessment of simple neuron models." Journal of neuroscience methods 169.2 (2008): 417-424. .. [SS2003] Schreiber, S., et al. "A new correlation-based measure of spike timing reliability." Neurocomputing 52 (2003): 925-931. .. [VR2001] van Rossum, Mark CW. "A novel spike distance." Neural Computation 13.4 (2001): 751-763. .. [DA2003] Aronov, Dmitriy. "Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons." Journal of Neuroscience Methods 124.2 (2003): 175-179.


نحوه نصب


نصب پکیج whl fit_neuron-0.0.6:

    pip install fit_neuron-0.0.6.whl


نصب پکیج tar.gz fit_neuron-0.0.6:

    pip install fit_neuron-0.0.6.tar.gz