معرفی شرکت ها


fisx-1.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Quantitative X-Ray Fluorescence Analysis Support Library
ویژگی مقدار
سیستم عامل -
نام فایل fisx-1.3.0
نام fisx
نسخه کتابخانه 1.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده V. Armando Solé
ایمیل نویسنده sole@esrf.fr
آدرس صفحه اصلی https://github.com/vasole/fisx
آدرس اینترنتی https://pypi.org/project/fisx/
مجوز MIT
==== fisx ==== Main development website: https://github.com/vasole/fisx .. image:: https://travis-ci.org/vasole/fisx.svg?branch=master :target: https://travis-ci.org/vasole/fisx .. image:: https://ci.appveyor.com/api/projects/status/github/vasole/fisx?branch=master&svg=true :target: https://ci.appveyor.com/project/vasole/fisx This software library implements formulas to calculate, given an experimental setup, the expected x-ray fluorescence intensities. The library accounts for secondary and tertiary excitation, K, L and M shell emission lines and de-excitation cascade effects. The basic implementation is written in C++ and a Python binding is provided. Account for secondary excitation is made via the reference: D.K.G. de Boer, X-Ray Spectrometry 19 (1990) 145-154 with the correction mentioned in: D.K.G. de Boer et al, X-Ray Spectrometry 22 (1993) 33-28 Tertiary excitation is accounted for via an appproximation. The accuracy of the corrections has been tested against experimental data and Monte Carlo simulations. License ------- This code is relased under the MIT license as detailed in the LICENSE file. Installation ------------ To install the library for Python just use ``pip install fisx``. If you want build the library for python use from the code source repository, just use one of the ``pip install .`` or the ``python setup.py install`` approaches. It is convenient (but not mandatory) to have cython >= 0.17 installed for it. Testing ------- To run the tests **after installation** run:: python -m fisx.tests.testAll Example ------- There is a `web application <http://fisxserver.esrf.fr>`_ using this library for calculating expected x-ray count rates. This piece of Python code shows how the library can be used via its python binding. .. code-block:: python from fisx import Elements from fisx import Material from fisx import Detector from fisx import XRF elementsInstance = Elements() elementsInstance.initializeAsPyMca() # After the slow initialization (to be made once), the rest is fairly fast. xrf = XRF() xrf.setBeam(16.0) # set incident beam as a single photon energy of 16 keV xrf.setBeamFilters([["Al1", 2.72, 0.11, 1.0]]) # Incident beam filters # Steel composition of Schoonjans et al, 2012 used to generate table I steel = {"C": 0.0445, "N": 0.04, "Si": 0.5093, "P": 0.02, "S": 0.0175, "V": 0.05, "Cr":18.37, "Mn": 1.619, "Fe":64.314, # calculated by subtracting the sum of all other elements "Co": 0.109, "Ni":12.35, "Cu": 0.175, "As": 0.010670, "Mo": 2.26, "W": 0.11, "Pb": 0.001} SRM_1155 = Material("SRM_1155", 1.0, 1.0) SRM_1155.setComposition(steel) elementsInstance.addMaterial(SRM_1155) xrf.setSample([["SRM_1155", 1.0, 1.0]]) # Sample, density and thickness xrf.setGeometry(45., 45.) # Incident and fluorescent beam angles detector = Detector("Si1", 2.33, 0.035) # Detector Material, density, thickness detector.setActiveArea(0.50) # Area and distance in consistent units detector.setDistance(2.1) # expected cm2 and cm. xrf.setDetector(detector) Air = Material("Air", 0.0012048, 1.0) Air.setCompositionFromLists(["C1", "N1", "O1", "Ar1", "Kr1"], [0.0012048, 0.75527, 0.23178, 0.012827, 3.2e-06]) elementsInstance.addMaterial(Air) xrf.setAttenuators([["Air", 0.0012048, 5.0, 1.0], ["Be1", 1.848, 0.002, 1.0]]) # Attenuators fluo = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"], elementsInstance, secondary=2, useMassFractions=1) print("Element Peak Energy Rate Secondary Tertiary") for key in fluo: for layer in fluo[key]: peakList = list(fluo[key][layer].keys()) peakList.sort() for peak in peakList: # energy of the peak energy = fluo[key][layer][peak]["energy"] # expected measured rate rate = fluo[key][layer][peak]["rate"] # primary photons (no attenuation and no detector considered) primary = fluo[key][layer][peak]["primary"] # secondary photons (no attenuation and no detector considered) secondary = fluo[key][layer][peak]["secondary"] # tertiary photons (no attenuation and no detector considered) tertiary = fluo[key][layer][peak].get("tertiary", 0.0) # correction due to secondary excitation enhancement2 = (primary + secondary) / primary enhancement3 = (primary + secondary + tertiary) / primary print("%s %s %.4f %.3g %.5g %.5g" % \ (key, peak + (13 - len(peak)) * " ", energy, rate, enhancement2, enhancement3))


نیازمندی

مقدار نام
- numpy


نحوه نصب


نصب پکیج whl fisx-1.3.0:

    pip install fisx-1.3.0.whl


نصب پکیج tar.gz fisx-1.3.0:

    pip install fisx-1.3.0.tar.gz