معرفی شرکت ها


fireml-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

fireml machine learning framework
ویژگی مقدار
سیستم عامل -
نام فایل fireml-0.1.1
نام fireml
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Anatoly Belikov
ایمیل نویسنده awbelikov@gmail.com
آدرس صفحه اصلی https://bitbucket.org/noSkill/fireml
آدرس اینترنتی https://pypi.org/project/fireml/
مجوز -
# README # Caffe-like machine learning framework in python ## layers types ### ImageData layer to read images. Possible sources: txt file with path labels on each line, cifar archive. **image_data_param**: source: string - path to cifar archive or txt file batch_size: int - how many images to process in each iteration shuffle: bool - images will be shuffled when sampling for a batch new_height: int - new image height(can be same as original) new_width: int - new image width(can be same as original) new_labels: int - expected number of labels(txt file may contain multiple labels for each path) example: layer { top: "data" top: "label" name: "data" type: "ImageData" image_data_param { source: "../cifar/cifar-10-python.tar.gz" source: "data.txt.3" # use cifar or txt file batch_size: 65 shuffle: true new_height: 32 new_width: 32 n_labels: 10 } transform_param { mean_value: 126 # r mean_value: 123 # g mean_value: 114 # b mirror: true scale: 0.02728125 standard_params { var_average: 5000 mean_average: 5000 mean_per_channel: false var_per_channel: false } } include: { phase: TRAIN } } **transform_param** Parameters for data preprocessing **standard_params** Parameters for preprocessor for data standardization. To achieve zero mean and unit variance the preprocessor will subtract iterative mean from each sample and divide the result by standard deviation. standard_params { var_average: 1 mean_average: 1 mean_per_channel: false var_per_channel: true } var_average: int [default = 0] - use last var_average samples to compute variance and std disabled if var_average == 0 mean_average: int [default = 0] - use last var_average samples to compute mean disabled if mean_average == 0 mean_per_channel: bool [default = false] - subtract from each channel mean for that channel var_per_channel: [default = false] - divide each channel by separate std value ### Convolution Convolution of 2-3 d images(matrices) **convolution_param** num_output: int number of filters(output feature maps) kernel_size: int size of receptive field of filters. Receptive field is kernel_size * kernel_size stride: int - filter will be applied after stride pixels weight_filler: see weight filler example: layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" convolution_param { num_output: 40 kernel_size: 3 stride: 2 weight_filler { type: "xavier" variance_norm: AVERAGE } } } ### Pooling Subsampling layer for max or average pooling **pooling_param** pool: MAX or AVE kernel_size: int subsampling window size stride: int perform pooling each *stride* pixels example: layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } ### Accuracy Layer for computing accuracy Accuracy of a classifier is defined as (true positive + true negative)/total In multilabel classification example counts as correctly classified iff **all** outputs are correct. Example: layer { name: "accuracy" type: "Accuracy" bottom: "pool10" bottom: "label" top: "accuracy" } ## weight_filler Weigth filler parameters are common for all layers with weights type: string "xavier", "gaussian", "uniform" mean: float mean value for gaussian initialization std: float standard deviation for gaussian initialization min: float lower bound for uniform initialization max: float upper bound for uniform initialization ## Activation functions ### SeLU Self-regularized linear unit: example: { name: "relu_conv1" type: "SeLU" bottom: "conv1" top: "conv1" } ## Loss layers ### SigmoidCrossEntropyLoss Layer that applies sigmoid elementwise, followed by cross-entropy log loss -mean(sum(y * log(p(y)) + (1 - y) * log(1 - p(y)))) where p(y) - sigmoid transformation of layer's input, that is vector of independent probabilities for each class. example: layer { name: "loss" type: "SigmoidCrossEntropyLoss" bottom: "pool1" bottom: "label" top: "loss" include { phase: TRAIN } } ## Maxout layer Apply max operator for each *size* channels size: int [default = 0] - take max over each *size* channels lambda: int [default = 0.0] - apply probabilistic max if lambda != 0 layer { name: "maxout_1" type: "Maxout" maxout_param { lambda: 1 size: 2 } bottom: "conv1" top: "conv1" }


نحوه نصب


نصب پکیج whl fireml-0.1.1:

    pip install fireml-0.1.1.whl


نصب پکیج tar.gz fireml-0.1.1:

    pip install fireml-0.1.1.tar.gz