معرفی شرکت ها


fipt-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python module to analyze fast impedance tortuosity measurements.
ویژگی مقدار
سیستم عامل -
نام فایل fipt-0.3.0
نام fipt
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Deniz Bozyigit
ایمیل نویسنده deniz195@gmail.com
آدرس صفحه اصلی https://github.com/deniz195/fipt-analysis
آدرس اینترنتی https://pypi.org/project/fipt/
مجوز MIT
# FIPT: Fast impedance tortuosity FIPT is a measurement technique that allows a fast determination of the ionic resistance for battery electrodes. The technique is based on the work by J. Landesfeind ([DOI: 10.1149/issn.1945-7111](https://dx.doi.org/10.1149/2.1141607jes)) and then optimized for execution speed and reliability at [Battrion](https://battrion.com). The measurement setup can be built based on [https://github.com/deniz195/fipt](https://github.com/deniz195/fipt) The data aquired in an FIPT measurement can be analyzed by the code in this repository. The code fits an analytical model to the data to determine the relevant parameters of the measurement: ``` r_ion - Ionic resistance r_sep - Seperator resistance chisqr - χ2 as quality of fit gamma - Phase exponent q_s - Capacitance factor ``` The ionic resistance can be used to calculate the MacMullin number (and the tortuosity), which are important performance parameters of battery electrodes. ## Quick analysis If you want to quickly analyze your impedance data: Install fipt-analysis: ```bash pip install fipt[full] ``` Put the test data `test_data_001.csv` in your current folder ([download here](https://github.com/deniz195/fipt-analysis/raw/master/examples/test_data_001.csv) from the `examples` folder). Analyze the data: ```bash python -m fipt ./test_data_001.csv ``` To analyze your own data, put it in a file with the same format as `test_data_001.csv`, which is: ``` Format: CSV 1st column, Frequency in [Hz] 2nd column, Z' in [Ohm] 3rd column, Z'' in [Ohm] (Name of columns is not important) ``` ## Examples To see how to analyze fipt data in your own python code, refer to the jupyter notebook `demo_fipt.ipynb` in the examples folder. ## Features and known issues The code was optimized to allow the fitting and analysis of large numbers of data files, with minimum user intervention. The key features of the code are: - Robust estimation of starting parameters from raw data - Resistance to outlier data points through use of Student-T likelihood function - Ability to verify each fit, through automatic generation of result files (plots, statistics, etc.) Known issues: - The code is currently provided with a minimum of documentation. - Calculation of MacMullin number and tortuosity not yet included ## Requirements Required packages are `numpy`, `scipy` for data and statistical models and `lmfit` to perform the model fitting. It is recommended (but not necessary) to have pandas and matplotlib installed, so that fipt-analysis will be able to create plots of the fitting. These packages are automatically installed when using the install configuration `full`: ```bash pip install fipt[full] ``` ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate. For questions please feel free to reach out to Deniz Bozyigit ([dbozyigit@battrion.com](mailto:dbozyigit@battrion.com)) ## License [MIT](https://choosealicense.com/licenses/mit/)


نیازمندی

مقدار نام
>=1.0.0 lmfit
>=1.16.5 numpy
>=1.3.1 scipy
>=0.25.1) pandas
>=3.0.0) matplotlib
>=5.2.1) pytest
>=0.25.1) pandas
>=3.0.0) matplotlib


نحوه نصب


نصب پکیج whl fipt-0.3.0:

    pip install fipt-0.3.0.whl


نصب پکیج tar.gz fipt-0.3.0:

    pip install fipt-0.3.0.tar.gz