معرفی شرکت ها


finitediff-0.6.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Finite difference weights for any derivative order on arbitrarily spaced grids.
ویژگی مقدار
سیستم عامل -
نام فایل finitediff-0.6.4
نام finitediff
نسخه کتابخانه 0.6.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Björn Dahlgren
ایمیل نویسنده bjodah@gmail.com
آدرس صفحه اصلی https://github.com/bjodah/finitediff
آدرس اینترنتی https://pypi.org/project/finitediff/
مجوز BSD
finitediff ========== .. image:: http://hera.physchem.kth.se:8080/api/badges/bjodah/finitediff/status.svg :target: http://hera.physchem.kth.se:8080/bjodah/finitediff :alt: Build status .. image:: https://img.shields.io/pypi/v/finitediff.svg :target: https://pypi.python.org/pypi/finitediff :alt: PyPI version .. image:: https://zenodo.org/badge/14988640.svg :target: https://zenodo.org/badge/latestdoi/14988640 :alt: Zenodo DOI .. image:: https://img.shields.io/badge/python-2.7,3.6,3.7-blue.svg :target: https://www.python.org/ :alt: Python version .. image:: https://img.shields.io/pypi/l/finitediff.svg :target: https://github.com/bjodah/finitediff/blob/master/LICENSE :alt: License .. image:: http://hera.physchem.kth.se/~finitediff/branches/master/htmlcov/coverage.svg :target: http://hera.physchem.kth.se/~finitediff/branches/master/htmlcov :alt: coverage ``finitediff`` containts three implementations of Begnt Fornberg's formulae for generation of finite difference weights on aribtrarily spaced one dimensional grids: - `C89 <src/finitediff_c.c>`_ - `Fortran 90 <src/finitediff_fort.f90>`_ - `C++ <finitediff/include/finitediff_templated.hpp>`_ The finite difference weights can be used for optimized inter-/extrapolation data series for up to arbitrary derivative order. Python_ bindings (to the C versions) are also provided. .. _Python: https://www.python.org .. _finitediff: https://github.com/bjodah/finitediff Capabilities ------------ ``finitediff`` currently provides callbacks for estimation of derivatives or interpolation either at a single point or over an array (available from the Python bindings). The user may also manually generate the corresponding weights. (see ``calculate_weights``) Finitediff can be conditionally compiled to make ``finitediff_interpolate_by_finite_diff`` multithreaded (when ``FINITEDIFF_OPENMP`` is defined). Then the number of threads used is set through the environment variable ``FINITEDIFF_NUM_THREADS`` (or ``OMP_NUM_THREADS``). Documentation ------------- Autogenerated API documentation for latest stable release is found here: `<https://bjodah.github.io/finitediff/latest>`_ (and the development version for the current master branch is found here: `<http://hera.physchem.kth.se/~finitediff/branches/master/html>`_). Examples -------- Generating finite difference weights is simple using C++11: .. code:: C++ #include "finitediff_templated.hpp" #include <vector> #include <string> #include <iostream> int main(){ const unsigned max_deriv = 2; std::vector<std::string> labels {"0th derivative", "1st derivative", "2nd derivative"}; std::vector<double> x {0, 1, -1, 2, -2}; // Fourth order of accuracy auto coeffs = finitediff::generate_weights(x, max_deriv); for (unsigned deriv_i = 0; deriv_i <= max_deriv; deriv_i++){ std::cout << labels[deriv_i] << ": "; for (unsigned idx = 0; idx < x.size(); idx++){ std::cout << coeffs[deriv_i*x.size() + idx] << " "; } std::cout << std::endl; } } :: $ cd examples/ $ g++ -std=c++11 demo.cpp -I../include $ ./a.out Zeroth derivative (interpolation): 1 -0 0 0 -0 First derivative: -0 0.666667 -0.666667 -0.0833333 0.0833333 Second derivative: -2.5 1.33333 1.33333 -0.0833333 -0.0833333 and of course using the python bindings: .. code:: python >>> from finitediff import get_weights >>> import numpy as np >>> c = get_weights(np.array([0, -1., 1]), 0, maxorder=1) >>> np.allclose(c[:, 1], [0, -.5, .5]) True from Python you can also use the finite differences to interpolate values (or derivatives thereof): .. code:: python >>> from finitediff import interpolate_by_finite_diff as ifd >>> x = np.array([0, 1, 2]) >>> y = np.array([[2, 3, 5], [3, 4, 7], [7, 8, 9], [3, 4, 6]]) >>> xout = np.linspace(0.5, 1.5, 5) >>> r = ifd(x, y, xout, maxorder=2) >>> r.shape (5, 4, 3) see the ``examples/`` directory for more examples. Installation ------------ Simplest way to install is to use the `conda package manager <http://conda.pydata.org/docs/>`_: :: $ conda install -c conda-forge finitediff pytest $ python -m pytest --pyargs finitediff tests should pass. Manual installation ~~~~~~~~~~~~~~~~~~~ You can install ``finitediff`` by using ``pip``:: $ python -m pip install --user finitediff (you can skip the ``--user`` flag if you have got root permissions), to run the tests you need ``pytest`` too:: $ python -m pip install --user --upgrade pytest $ python -m pytest --pyargs finitediff Dependencies ------------ You need either a C, C++ or a Fortran 90 compiler. On debian based linux systems you may install (all) by issuing:: $ sudo apt-get install gfortran g++ gcc See `setup.py <setup.py>`_ for optional (Python) dependencies. Citing ------ The algortihm is from the following paper: http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0 :: @article{fornberg_generation_1988, title={Generation of finite difference formulas on arbitrarily spaced grids}, author={Fornberg, Bengt}, journal={Mathematics of computation}, volume={51}, number={184}, pages={699--706}, year={1988} doi={10.1090/S0025-5718-1988-0935077-0} } You may want to, in addition to the paper, cite finitediff (for e.g. reproducibility), and you can get per-version DOIs from the zenodo archive: .. image:: https://zenodo.org/badge/14988640.svg :target: https://zenodo.org/badge/latestdoi/14988640 :alt: Zenodo DOI Licensing --------- The source code is Open Source and is released under the very permissive `"simplified (2-clause) BSD license" <https://opensource.org/licenses/BSD-2-Clause>`_. See `LICENSE <LICENSE>`_ for further details. Author ------ Björn Ingvar Dahlgren (gmail address: bjodah). See file `AUTHORS <AUTHORS>`_ in root for a list of all authors.


نحوه نصب


نصب پکیج whl finitediff-0.6.4:

    pip install finitediff-0.6.4.whl


نصب پکیج tar.gz finitediff-0.6.4:

    pip install finitediff-0.6.4.tar.gz