معرفی شرکت ها


finetuner-client-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks.
ویژگی مقدار
سیستم عامل -
نام فایل finetuner-client-0.2.2
نام finetuner-client
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jina AI
ایمیل نویسنده hello@jina.ai
آدرس صفحه اصلی https://github.com/jina-ai/finetuner/
آدرس اینترنتی https://pypi.org/project/finetuner-client/
مجوز Apache 2.0
<p align="center"> <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>Fine-tuning embeddings on domain specific data for better performance on neural search tasks.</b> </p> <p align=center> <a href="https://pypi.org/project/finetuner/"><img src="https://img.shields.io/badge/Python-3.9%2B-blue alt="Python 3.9" title="Finetuner supports Python 3.9 and above"></a> <a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-2.2k%2B-blueviolet?logo=slack&amp;logoColor=white"></a> </p> <!-- start elevator-pitch --> Fine-tuning deep neural networks (DNNs) significantly improves performance on domain specific neural search tasks. However, fine-tuning for neural search is not trivial, as it requires a combination of expertise in ML and Information Retrieval. Finetuner makes fine-tuning simple and fast by handling all related complexity and infrastructure in the cloud. With Finetuner, you can easily make models more performant and production ready. 📈**Performance boost**: Finetuner significantly increases the performance of pretrained models on domain specific neural search applications. 🔱 **Simple yet powerful**: Interacting with Finetuner is simple and seamless, and also supports rich features such as selections of different loss functions, e.g. siamese/triplet loss, metric learning, layer pruning, weights freezing, dimensionality reduction, and much more. ☁ **Fine-tune in the cloud**: Finetuner runs your fine-tuning jobs in the cloud. You never have to worry about provisioning (cloud) resources! Finetuner handles all related complexity and infrastructure. <!-- end elevator-pitch --> ## What is the purpose of Finetuner? Finetuner enables performance gains on domain specific neural search tasks by fine-tuning models in the cloud. We have conducted experiments on various neural search tasks in different domains to illustrate these performance improvements. Finetuner also aims to make fine-tuning simple and fast. When interacting with Finetuner, the API takes care of all your fine-tuning jobs in the cloud. This only requires a few lines of code from you, as demonstrated in [below](#fine-tuning-resnet50-on-totally-looks-like-dataset). ## How does it work? <img src="https://github.com/jina-ai/finetuner/blob/docs-update-readme/docs/_static/finetuner-client-journey.svg?raw=true" title="Finetuner Client user journey."> ## Install Requires Python 3.7+ installed on Linux/MacOS. ```bash pip install -U finetuner-client ``` ## Fine-tuning ResNet50 on Totally Looks Like dataset ```python import finetuner from finetuner.callback import EvaluationCallback finetuner.login() finetuner.create_experiment(name='tll-experiment') run = finetuner.fit( model='resnet50', train_data='resnet-tll-train-data', callbacks=[EvaluationCallback(query_data='resnet-tll-eval-data')], ) print(run.status()) print(run.logs()) run.save_model('resnet-tll') ``` This minimal example code starts a fine-tuning run with only the necessary arguments. It has the following steps: * Login to Finetuner: This is necessary if you'd like to run fine-tuning jobs with Finetuner in the cloud. * Create experiment: This experiment will contain various runs with different configurations. * Start fine-tuning run: Select backbone model, training and evaluation data for your evaluation callback. * Monitor: Check the status and logs of the progress on your fine-tuning run. * Save model: If your fine-tuning run has successfully completed, save it for further use and integration. <!-- start support-pitch --> ## Support - Take a look at the [step by step](https://ft-docs-polish--jina-docs.netlify.app/2_step_by_step/) documentation for an overview of how Finetuner works. - Get started with our example use-cases in the [Finetuner in action](https://ft-docs-polish--jina-docs.netlify.app/3_finetuner_in_action/) section. - Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and support queries. - Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas. - Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features. - **When?** The second Tuesday of every month - **Where?** Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics)) and [live stream on YouTube](https://youtube.com/c/jina-ai) - Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai) ## Join Us Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE). [We are actively hiring](https://jobs.jina.ai) AI engineers, solution engineers to build the next neural search ecosystem in opensource. <!-- end support-pitch -->


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl finetuner-client-0.2.2:

    pip install finetuner-client-0.2.2.whl


نصب پکیج tar.gz finetuner-client-0.2.2:

    pip install finetuner-client-0.2.2.tar.gz