معرفی شرکت ها


finetuner-0.7.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Task-oriented finetuning for better embeddings on neural search.
ویژگی مقدار
سیستم عامل -
نام فایل finetuner-0.7.6
نام finetuner
نسخه کتابخانه 0.7.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jina AI
ایمیل نویسنده hello@jina.ai
آدرس صفحه اصلی https://github.com/jina-ai/finetuner/
آدرس اینترنتی https://pypi.org/project/finetuner/
مجوز Apache 2.0
<br><br> <p align="center"> <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>Task-oriented finetuning for better embeddings on neural search</b> </p> <p align=center> <a href="https://pypi.org/project/finetuner/"><img alt="PyPI" src="https://img.shields.io/pypi/v/finetuner?label=Release&style=flat-square"></a> <a href="https://codecov.io/gh/jina-ai/finetuner"><img alt="Codecov branch" src="https://img.shields.io/codecov/c/github/jina-ai/finetuner/main?logo=Codecov&logoColor=white&style=flat-square"></a> <a href="https://pypistats.org/packages/finetuner"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/finetuner?style=flat-square"></a> <a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-3.6k-blueviolet?logo=slack&amp;logoColor=white&style=flat-square"></a> </p> <!-- start elevator-pitch --> Fine-tuning is an effective way to improve performance on [neural search](https://jina.ai/news/what-is-neural-search-and-learn-to-build-a-neural-search-engine/) tasks. However, setting up and performing fine-tuning can be very time-consuming and resource-intensive. Jina AI's Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud. With Finetuner, you can easily enhance the performance of pre-trained models, making them production-ready [without extensive labeling](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) or expensive hardware. 🎏 **Better embeddings**: Create high-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses. ⏰ **Low budget, high expectations**: Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour. 📈 **Performance promise**: Enhance the performance of pre-trained models so that they deliver state-of-the-art performance on domain-specific applications. 🔱 **Simple yet powerful**: Easy access to 40+ mainstream loss functions, 10+ optimizers, layer pruning, weight freezing, dimensionality reduction, hard-negative mining, cross-modal models, and distributed training. ☁ **All-in-cloud**: Train using our GPU infrastructure, manage runs, experiments, and artifacts on Jina AI Cloud without worrying about resource availability, complex integration, or infrastructure costs. <!-- end elevator-pitch --> ## [Documentation](https://finetuner.jina.ai/) ## Benchmarks <table> <thead> <tr> <th>Model</th> <th>Task</th> <th>Metric</th> <th>Pretrained</th> <th>Finetuned</th> <th>Delta</th> <th>Run it!</th> </tr> </thead> <tbody> <tr> <td rowspan="2">BERT</td> <td rowspan="2"><a href="https://www.kaggle.com/c/quora-question-pairs">Quora</a> Question Answering</td> <td>mRR</td> <td>0.835</td> <td>0.967</td> <td><span style="color:green">15.8%</span></td> <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1Ui3Gw3ZL785I7AuzlHv3I0-jTvFFxJ4_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td> </tr> <tr> <td>Recall</td> <td>0.915</td> <td>0.963</td> <td><span style="color:green">5.3%</span></td> </tr> <tr> <td rowspan="2">ResNet</td> <td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td> <td>mAP</td> <td>0.110</td> <td>0.196</td> <td><span style="color:green">78.2%</span></td> <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td> </tr> <tr> <td>Recall</td> <td>0.249</td> <td>0.460</td> <td><span style="color:green">84.7%</span></td> </tr> <tr> <td rowspan="2">CLIP</td> <td rowspan="2"><a href="https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Deep Fashion</a> text-to-image search</td> <td>mRR</td> <td>0.575</td> <td>0.676</td> <td><span style="color:green">17.4%</span></td> <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1yKnmy2Qotrh3OhgwWRsMWPFwOSAecBxg?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td> </tr> <tr> <td>Recall</td> <td>0.473</td> <td>0.564</td> <td><span style="color:green">19.2%</span></td> </tr> <tr> <td rowspan="2">M-CLIP</td> <td rowspan="2"><a href="https://xmrec.github.io/">Cross market</a> product recommendation (German)</td> <td>mRR</td> <td>0.430</td> <td>0.648</td> <td><span style="color:green">50.7%</span></td> <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/10Wldbu0Zugj7NmQyZwZzuorZ6SSAhtIo"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td> </tr> <tr> <td>Recall</td> <td>0.247</td> <td>0.340</td> <td><span style="color:green">37.7%</span></td> </tr> <tr> <td rowspan="2">PointNet++</td> <td rowspan="2"><a href="https://modelnet.cs.princeton.edu/">ModelNet40</a> 3D Mesh Search</td> <td>mRR</td> <td>0.791</td> <td>0.891</td> <td><span style="color:green">12.7%</span></td> <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1lIMDFkUVsWMshU-akJ_hwzBfJ37zLFzU?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td> </tr> <tr> <td>Recall</td> <td>0.154</td> <td>0.242</td> <td><span style="color:green">57.1%</span></td> </tr> </tbody> </table> <sub><sup>All metrics were evaluated for k@20 after training for 5 epochs using the Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models, 5e-4 for PointNet++</sup></sub> <!-- start install-instruction --> ## Install Make sure you have Python 3.8+ installed. Finetuner can be installed via `pip` by executing: ```bash pip install -U finetuner ``` If you want to encode `docarray.DocumentArray` objects with the `finetuner.encode` function, you need to install `"finetuner[full]"`. This includes a number of additional dependencies, which are necessary for encoding: Torch, Torchvision and OpenCLIP: ```bash pip install "finetuner[full]" ``` <!-- end install-instruction --> > ⚠️ Starting with version 0.5.0, Finetuner computing is performed on Jina AI Cloud. The last local version is `0.4.1`. > This version is still available for installation via `pip`. See [Finetuner git tags and releases](https://github.com/jina-ai/finetuner/releases). <!-- start finetuner-articles --> ## Articles about Finetuner Check out our published blogposts and tutorials to see Finetuner in action! - [Fine-tuning with Low Budget and High Expectations](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) - [Hype and Hybrids: Search is more than Keywords and Vectors](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/) - [Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models](https://jina.ai/news/improving-search-quality-non-english-queries-fine-tuned-multilingual-clip-models/) - [How Much Do We Get by Finetuning CLIP?](https://jina.ai/news/applying-jina-ai-finetuner-to-clip-less-data-smaller-models-higher-performance/) <!-- end finetuner-articles --> <!-- start support-pitch --> ## Support - Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and support queries. - Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas. - Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features. - **When?** The second Tuesday of every month - **Where?** Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics)) and [live stream on YouTube](https://youtube.com/c/jina-ai) - Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai) ## Join Us Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE). [We are actively hiring](https://jobs.jina.ai) AI engineers and solution engineers to build the next generation of open-source AI ecosystems. <!-- end support-pitch -->


زبان مورد نیاز

مقدار نام
>=3.8.0 Python


نحوه نصب


نصب پکیج whl finetuner-0.7.6:

    pip install finetuner-0.7.6.whl


نصب پکیج tar.gz finetuner-0.7.6:

    pip install finetuner-0.7.6.tar.gz