معرفی شرکت ها


finance-0.2502


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

finance - Financial Risk Calculations. Optimized for ease of use through class construction and operator overload
ویژگی مقدار
سیستم عامل -
نام فایل finance-0.2502
نام finance
نسخه کتابخانه 0.2502
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Niels Henrik Bruun
ایمیل نویسنده niels.henrik.bruun@gmail.com
آدرس صفحه اصلی http://www.bruunisejs.dk/PythonHacks/
آدرس اینترنتی https://pypi.org/project/finance/
مجوز http://www.opensource.org/licenses/PythonSoftFoundation.php
########################## finance - long description ########################## The purpose of this project is to deliver ease of use python code for financial risk calculations. This code is not unconsious reproduction of textbook material. It's about developing `abstract data types <http://en.wikipedia.org/wiki/Abstract_data_type>`_ as objects to ease financial calculations and code development. At this point the code is by no means optimized for speed. Financial and mathematical concepts are developed on the PythonHacks homepage. * `To see more <http://www.bruunisejs.dk/PythonHacks/rstFiles/300%20Thoughts%20on%20finance.html>`_ ===================================== Part 1 - Simple time dependent assets ===================================== Time is generic like a period such as eg 1 month and non-generic like a specific date. In part both types are implemented with a heavy use of operator overload. This means that questions like: How many days are there between a date 2009-12-27 and 3 months ahead can be calculated like: >>> from finance import bankdate >>> t1 = bankdate('2009-12-27') >>> print t1 + '3m' 2010-03-27 >>> print t1 + '3m' - t1 90 * `To see more on bankdate <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.bankdate>`_ * `To see more on timeperiods <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.timeperiod>`_ Further a vector-like structure handling future payments - a dateflow - is implemented as a class. Through method overload it is easy to build even very complex cashflows (= dateflow) * `To see more on dateflows <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.dateflow>`_ Generators of standard dateflows is also a part of the package. * `To see more on daterange <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.daterange>`_ * `To see more on daterangeiter <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.daterangeiter>`_ * `To see more on standarddateflowgenerator <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.standarddateflowgenerator>`_ Before any calculations on a dateflow can be made dates has to be converted into times. For this the class datetotime is created. * `To see more on datetotime <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.datetotime>`_ Finally simpel calculations like present value and different sorts of duration can be made though the class timeflow * `To see more on timeflow <http://www.bruunisejs.dk/PythonHacks/rstFiles/200%20PythonHacks.html#finance.timeflow>`_ How to install -------------- Just run setup.py install command. Or in windows use the windows installer. Documentation, etc ------------------ Visit my `homepage <http://www.bruunisejs.dk/PythonHacks/>`_ to see more on how to use and the research behind the code. It's a blog like place on finance, math and scientific computing. ================== Changes in 0.2502: ================== There were still some problems with ultimo dates which now should be solved. Thank you to Johan Uys for bringing it to my attention. ================== Changes in 0.2501: ================== Problems with generating ultimo dates has been solved. Thank you to Ankush Sahai for bringing it to my attention. ================ Changes in 0.25: ================ Code has been rewritten to isolate strickt mathematical strucktures like e.g. DecimalVector in separate packages. There have been slight modifications to yieldcurves. ================ Changes in 0.20: ================ Now discount curves based on benchmark zero bonds where the rates are continous forward rates. It is possible to get standard yieldcalculations done like: Instantiate: >>> import finance >>> ns = finance.yieldcurves.NelsonSiegel(0.061, -0.01, -0.0241, 0.275) See the settings: >>> ns Nelson Siegel (level=0.061, slope=-0.01, curvature=-0.0241, scale=0.275) Get the discountfactors at times 1, 2, 5, 10: >>> times = [1, 2, 5, 10] >>> ns(times) DecimalVector([0.9517121708497056177816078083, 0.9072377300179418172521412527, 0.7844132592062346545344544940, 0.6008958407659500402742872859]) Get the zero coupon rate at time 5 and 7 >>> r5, r7 = ns.zero_coupon_rate([5, 7]) >>> r5, r7 (Decimal('0.049762403554685553400657196'), Decimal('0.050625188777310061599365592')) Get the forward rate between time 5 and 7 >>> f5_7 = ns.discrete_forward_rate(5, 7) >>> f5_7 Decimal('0.052785255470657667493924028') As shown above yieldcurves are made using the DecimalVector concept. Especially all outputs will be Decimal or DecimalVector. For now there are 3 different yield curve types: * The Nelson Siegel * The natural cubic spline * The financial cubic spline This way the finance package covers a large part of yieldcurves in use. Since it is easy to add more yieldcurves due to the design more will come. Yieldcurves are of course integrated into the timeflow. **So now it is possible to do most fixed income calculations**. **A tutorial on fixed income calculations in the finance package is on its way**. Risk calculations based on linearily decomposable discountcurves is postponed intil later. ###################### Planned added contents ###################### The planned development so far is: Planned added content of version 0.3: Currencies, implementing Markowitz etc Planned added content of version 0.4: Optionality though (binomial) trees Planned added content of version 0.5: Bootstrapping from timeflows to get a base of benchmark zero bonds Planned added content of version 0.6: Concept of portfolios, eg structured products


نحوه نصب


نصب پکیج whl finance-0.2502:

    pip install finance-0.2502.whl


نصب پکیج tar.gz finance-0.2502:

    pip install finance-0.2502.tar.gz