معرفی شرکت ها


filememo-0.3.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

File-based memoization decorator. Stores the results of expensive function calls and returns the cached result when the same inputs occur again.
ویژگی مقدار
سیستم عامل -
نام فایل filememo-0.3.4
نام filememo
نسخه کتابخانه 0.3.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Artёm IG
ایمیل نویسنده ortemeo@gmail.com
آدرس صفحه اصلی https://github.com/rtmigo/filememo_py#readme
آدرس اینترنتی https://pypi.org/project/filememo/
مجوز MIT
# [filememo](https://github.com/rtmigo/filememo_py#readme) File-based **memoization** decorator. Caches the results of expensive function calls. Retains the cached results between program restarts. CI tests are done in Python 3.8, 3.9 and 3.10 on macOS, Ubuntu and Windows. --- The function can be *expensive* because it is slow, or uses a lot of system resources, or literally makes a request to a paid API. The `memoize` decorator returns the cached result when the same function called with the same arguments. Thus, the function is expensive only once and inexpensive thereafter. For example, the simplest cache for downloaded data can be set like this: ``` python3 @memoize def downloaded(url): return requests.get(url) downloaded("http://example.net/aaa") # downloads data downloaded("http://example.net/bbb") # downloads data downloaded("http://example.net/aaa") # gets data from cache ``` Data is saved to the file system using [pickledir](https://pypi.org/project/pickledir/). Even after the program restart, the cached results will be in place. ``` python3 # gets data from cache after restart downloaded("http://example.net/aaa") ``` # Install ``` bash $ pip3 install filememo ``` # Use ``` python3 from filememo import memoize @memoize def long_running_function(a, b, c): return compute() # the following line actually computes the value only # when the program runs for the first time. On subsequent # runs, the value is read from the file x = long_running_function(1, 2, 3) ``` ## Function arguments The results depend on both the function and its arguments. All results are cached separately. ``` python3 @memoize def that_function(a, b, c): return compute(a, b, c) @memoize def other_function(a, b): return compute(a, b) # the following calls will cache three different values y1 = that_function(1, 2, 3) y2 = that_function(30, 20, 40) y3 = other_function(1, 2) # the way the arguments are set is also important, as is their order. # Therefore, the following calls are cached as three different ones y4 = other_function(1, b=2) y5 = other_function(a=1, b=2) y6 = other_function(b=2, a=1) ``` ## Cache directory If `dir_path` is not specified, the cached data is stored in the directory returned by the [`gettempdir`](https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir) . However, there is a high probability that the cache stored there will not survive a reboot. And even a certain probability that the system does not have a temporary directory, so the current directory will be considered temporary. To better control the situation, you can set a specific directory for storing caches. ``` python3 @memoize(dir_path='/var/tmp/myfuncs') def function(a, b): return a+b # it's ok if different functions share the same directory @memoize(dir_path='/var/tmp/myfuncs') def other_func(): return compute() ``` ## Expiration date The `max_age` argument sets two conditions at once: - if the result is not yet in the cache (and we will add it now), then it will live in the cache no longer than `max_age`. After that it will be automatically deleted - if the result is already in the cache, then we only use it if its age is less than `max_age`. Otherwise, the function will be run again, and the result will be replaced with a new one ``` python3 @memoize(max_age = datetime.timedelta(minutes=5)) def function(a, b): return compute() ``` ## Data version When you specify `version`, all results with different versions are considered outdated. Say you have the following function: ``` python3 @memoize(version=1) def function(a, b): return a + b ``` You changed your mind, and now the function should return the product of numbers instead of the sum. But the cache already contains the previous results with the sums. In this case, you can just change `version`. Previous results will not be returned. ``` python3 @memoize(version=2) def function(a, b): return a * b ``` Note that all **other** than the current version are deprecated, regardless of whether their value is greater or less. If you used `version=10`, and then started using `version=9`, then 9 is considered current, and 10 is obsolete. ## Exceptions If the decorated function throws an exception, the error is considered permanent. The exception is stored in the cache and will be raised every time. ``` python3 from filememo import memoize, FunctionException @memoize def divide(a, b): return a / b try: # tryng to run the function for the first time divide(1, 0) except FunctionException as e: print(f"Error: {e.inner}") try: # not actually running again, getting error from cache divide(1, 0) except FunctionException as e: print(f"Cached error: {e.inner}") ``` The `exceptions_max_age = None` argument will prevent exceptions from being cached. Each error will be considered a one-time error. ``` python3 @memoize(exceptions_max_age = None) def download(url): return http_get(url) while True: try: download('http://sample.net/path') break except FunctionException: time.sleep(1) # will retry ``` You can also set the expiration time for cached exceptions. It may differ from the caching time of the data itself. ``` python3 # keep downloaded data for a day, remember connection errors for 5 minutes @memoize(max_age = datetime.timedelta(days: 1) exceptions_max_age = datetime.timedelta(minutes: 5)) def download(url): return http_get(url) ``` ## In-memory caching Each call to a function decorated with `@memoize` results in I/O operations. If your absolute priority is performance, then even reading from the disk cache can be considered expensive. Although `filememo` does not attempt to cache the read data in memory, this functionality is easy to achieve by combining decorators. ``` python3 from functools import lru_cache from filememo import memoize @lru_cache @memoize def too_expensive(): return compute() ``` In this example, the `filememo` disk cache will be used to store the results between program runs, while the `functools` RAM cache will store the results between function calls. If the data is already in disk cache, and the program is just started, then calling `too_expensive()` for the first time will read the result from disk. Further calls to `too_expensive()` will return the result from memory.


نیازمندی

مقدار نام
>=0.3.5 pickledir


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl filememo-0.3.4:

    pip install filememo-0.3.4.whl


نصب پکیج tar.gz filememo-0.3.4:

    pip install filememo-0.3.4.tar.gz