معرفی شرکت ها


figcan-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Figcan - minimalistic configuration handling library for Python
ویژگی مقدار
سیستم عامل -
نام فایل figcan-0.0.4
نام figcan
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Shahar Evron
ایمیل نویسنده shahar@shoppimon.com
آدرس صفحه اصلی https://github.com/shoppimon/figcan
آدرس اینترنتی https://pypi.org/project/figcan/
مجوز Apache 2.0
Figcan - Minimalistic Configuration Handling Library ==================================================== *Figcan* is a minimalistic configuration handling library for Python. It is designed to help you manage runtime configuration coming from different sources, without making any assumptions about configuration file formats and locations, and while staying super simple to use for common use cases. Figcan has no runtime dependencies other than Python versions 2.7 or 3.4 and up. [![Build Status](https://travis-ci.org/shoppimon/figcan.svg?branch=master)](https://travis-ci.org/shoppimon/figcan) Figcan's Philosophy ------------------- *Figcan*'s design is based on a few basic assumptions: * Configuration is important in any but the most simple projects * Configuration can easily be described as a set of nested key-value pairs where values can have a few native scalar types (booleans, strings, numbers) or container types (lists, mappings) * Python dictionaries are *almost* perfect for configuration. *Almost*. * Configuration keys can be known in advance. The structure of your expected configuration is almost always known to your project's code and thus can be described in advance. * Configuration can come from multiple sources: in-code defaults, multiple configuration files, environment variables, command line arguments, database-persisted key-value pairs etc. * But realistically, objects read from these sources are not that different from each other: they can almost always be represented as Python object attributes or dictionaries * There is already a Python module in out there that handles reading values from these sources and converting them to some kind of native dictionary or object With those in mind, here is what *Figcan* will do: * Provide a dictionary-like object containing configuration * This object is created from a dictionary specifying your default configuration * Additional configuration values (in the form of Python dictionaries or objects) can be "layered" on top of this default configuration to override values And here is what *Figcan* will not do for you in one line - but supports doing very easily with just a few lines of custom code you will need to write: * Read and parse files in specific formats (`INI`, `JSON`, `YAML` etc.) * Look for configuration files in specific places, based on OS or environment * Read values from a specific command line argument parsers (`argparse`, `optparse`, `click` etc.) * Manage saving configuration to files or anywhere else * Provide any API to accessing configuration beyond what the Python `dict` interface provides (which, if you ask us, should be enough for everybody) We plan to provide some documentation and examples on how to get these done with *Figcan*. Getting Started --------------- ### Installation It is recommended to add *Figcan* to your project using `pip`: pip install figcan You should also be able to install directly from the source tree pulled from git: `TBD` ### Using in your project Typically, *Figcan* is used by reading configuration from all sources at the beginning of your program (e.g. in your `main`), and making the configuration object available to all other parts of the program as needed. Here is a very basic (but not unrealistic) usage example: ```python import os from figcan import Configuration from my_project.config import default_config # A dictionary defining default configuration values def main(): config = Configuration(default_config) # Apply configuration overrides from environment variables config.apply_flat(os.environ, prefix='MYPROJECT') # Do something with the configuration: db_engine = sqlalchemy.create_engine(config['db']['url']) ``` #### Applying configuration from YAML or JSON files: If your configuration is saved in a file format that can be parsed into a Python `dict`, you can easily get *Figcan* to work with it. For example: ```python import yaml from figcan import Configuration from my_project.config import default_config # A dictionary defining default configuration values def main(config_file_path): config = Configuration(default_config) with open(config_file_path) as f: config.apply(yaml.safe_load(f)) # Do something with the configuration: db_engine = sqlalchemy.create_engine(config['db']['url']) ``` Note that `Configuration.apply` will raise an exception if it encounters a configuration key that is not present in your `default_config`. This can be changed like so: ```python config.apply(yaml.safe_load(f), raise_on_unknown_key=False) ``` If you want to allow merging new configuration keys into a configuration section, you will need to define that section as `Extensible` in the base configuration: ```python from figcan import Configuration, Extensible default_config = dict({ # Base configuration keys are known ahead and static 'bind_port': 5656, 'db': { # Database settings keys are known ahead and static 'hostname': 'db.local', 'username': 'foobar', 'password': 'blahblah' } , 'logging': Extensible({ # But logging settings are flexible, and new handlers / loggers can be defined 'handlers': { 'handler_1': '...' } }) }) config = Configuration(default_config) # This will not raise an exception and 'handler_2' config will be available in `config`: config.apply({"logging": {"handlers": {"handler_2": "... more config ..."}}}) ``` #### Applying configuration from environment variables: #### Applying configuration from command line arguments: ## Some Alternatives to Consider There are many configuration handling libraries for Python. Some may be more suitable for you than *Figcan* (some we have tried before deciding to write *Figcan*): * * * ## TODO / Planned Features ### Schema based type coercion and validation of configuration values the idea here is that the initial `default_config` dict will also contain some type annotations in some form. These will be used to coerce override values (e.g. when coming as strings from environment variables) and to do some validation when configuration is applied. ### Allow defining "flexible" vs "non-flexible" configuration mapping For example, a `logging` section used for `logging.config.dictConfig` typically needs to have a flexible structure. However, making everything flexible can lead to typos etc. not being detected. ## Credits Figcan was created by the [Shoppimon](https://www.shoppimon.com) team and is in use by Shoppimon in highly used, critical production code. ## License © 2018 Shoppimon LTD, all rights reserved Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.


نیازمندی

مقدار نام
ython_versio typing;


زبان مورد نیاز

مقدار نام
>=2.7.12,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.* Python


نحوه نصب


نصب پکیج whl figcan-0.0.4:

    pip install figcan-0.0.4.whl


نصب پکیج tar.gz figcan-0.0.4:

    pip install figcan-0.0.4.tar.gz