معرفی شرکت ها


fiftyone-eval-only-0.14.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

FiftyOne, for evaluation only.
ویژگی مقدار
سیستم عامل -
نام فایل fiftyone-eval-only-0.14.3
نام fiftyone-eval-only
نسخه کتابخانه 0.14.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Voxel51, Inc.
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/fiftyone-eval-only/
مجوز Apache
<div align="center"> <p align="center"> <!-- prettier-ignore --> <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="55px"> &nbsp; <img src="https://user-images.githubusercontent.com/25985824/106288518-24bb7680-6216-11eb-8f10-60052c519586.png" height="50px"> **The open-source tool for building high-quality datasets and computer vision models** --- <!-- prettier-ignore --> <a href="https://voxel51.com/fiftyone">Website</a> • <a href="https://voxel51.com/docs/fiftyone">Docs</a> • <a href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/quickstart.ipynb">Try it Now</a> • <a href="https://voxel51.com/docs/fiftyone/tutorials/index.html">Tutorials</a> • <a href="https://github.com/voxel51/fiftyone-examples">Examples</a> • <a href="https://medium.com/voxel51">Blog</a> • <a href="https://join.slack.com/t/fiftyone-users/shared_invite/zt-gtpmm76o-9AjvzNPBOzevBySKzt02gg">Community</a> [![PyPI python](https://img.shields.io/pypi/pyversions/fiftyone)](https://pypi.org/project/fiftyone) [![PyPI version](https://badge.fury.io/py/fiftyone.svg)](https://pypi.org/project/fiftyone) [![Downloads](https://pepy.tech/badge/fiftyone)](https://pepy.tech/project/fiftyone) [![Build](https://github.com/voxel51/fiftyone/workflows/Build/badge.svg?branch=develop&event=push)](https://github.com/voxel51/fiftyone/actions?query=workflow%3ABuild) [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE) [![Slack](https://img.shields.io/badge/Slack-4A154B?logo=slack&logoColor=white)](https://join.slack.com/t/fiftyone-users/shared_invite/zt-gtpmm76o-9AjvzNPBOzevBySKzt02gg) [![Medium](https://img.shields.io/badge/Medium-12100E?logo=medium&logoColor=white)](https://medium.com/voxel51) [![Mailing list](http://bit.ly/2Md9rxM)](https://share.hsforms.com/1zpJ60ggaQtOoVeBqIZdaaA2ykyk) [![Twitter](https://img.shields.io/twitter/follow/Voxel51?style=social)](https://twitter.com/voxel51) [![FiftyOne](https://voxel51.com/images/fiftyone_poster.png)](https://fiftyone.ai) </p> </div> --- Nothing hinders the success of machine learning systems more than poor quality data. And without the right tools, improving a model can be time-consuming and inefficient. [FiftyOne](https://fiftyone.ai) supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Use FiftyOne to get hands-on with your data, including visualizing complex labels, evaluating your models, exploring scenarios of interest, identifying failure modes, finding annotation mistakes, and much more! You can get involved by joining our Slack community, reading our blog on Medium, and following us on social media: [![Slack](https://img.shields.io/badge/Slack-4A154B?logo=slack&logoColor=white)](https://join.slack.com/t/fiftyone-users/shared_invite/zt-gtpmm76o-9AjvzNPBOzevBySKzt02gg) [![Medium](https://img.shields.io/badge/Medium-12100E?logo=medium&logoColor=white)](https://medium.com/voxel51) [![Twitter](https://img.shields.io/badge/Twitter-1DA1F2?logo=twitter&logoColor=white)](https://twitter.com/voxel51) [![LinkedIn](https://img.shields.io/badge/LinkedIn-0077B5?logo=linkedin&logoColor=white)](https://www.linkedin.com/company/voxel51) [![Facebook](https://img.shields.io/badge/Facebook-1877F2?logo=facebook&logoColor=white)](https://www.facebook.com/voxel51) ## Installation You can install the latest stable version of FiftyOne via `pip`: ```shell pip install fiftyone ``` Consult the [installation guide](https://voxel51.com/docs/fiftyone/getting_started/install.html) for troubleshooting and other information about getting up-and-running with FiftyOne. ## Quickstart Dive right into FiftyOne by opening a Python shell and running the snippet below, which downloads a [small dataset](https://voxel51.com/docs/fiftyone/user_guide/dataset_zoo/datasets.html#quickstart) and launches the [FiftyOne App](https://voxel51.com/docs/fiftyone/user_guide/app.html) so you can explore it: ```py import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset("quickstart") session = fo.launch_app(dataset) ``` Then check out [this Colab notebook](https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/quickstart.ipynb) to see some common workflows on the quickstart dataset. Note that if you are running the above code in a script, you must include `session.wait()` to block execution until you close the App. See [this page](https://voxel51.com/docs/fiftyone/user_guide/app.html#creating-a-session) for more information. ## Documentation Full documentation for FiftyOne is available at [fiftyone.ai](https://fiftyone.ai). In particular, see these resources: - [Tutorials](https://voxel51.com/docs/fiftyone/tutorials/index.html) - [Recipes](https://voxel51.com/docs/fiftyone/recipes/index.html) - [User Guide](https://voxel51.com/docs/fiftyone/user_guide/index.html) - [CLI Documentation](https://voxel51.com/docs/fiftyone/cli/index.html) - [API Reference](https://voxel51.com/docs/fiftyone/api/fiftyone.html) ## Examples Check out the [fiftyone-examples](https://github.com/voxel51/fiftyone-examples) repository for open source and community-contributed examples of using FiftyOne. ## Contributing to FiftyOne FiftyOne is open source and community contributions are welcome! Check out the [contribution guide](https://github.com/voxel51/fiftyone/blob/develop/CONTRIBUTING.md) to learn how to get involved. ## Installing from source The instructions below are for macOS and Linux systems. Windows users may need to make adjustments. If you are working in Google Colab, [skip to here](#source-installs-in-google-colab). ### Prerequisites You will need: - [Python](https://www.python.org) (3.6 or newer) - [Node.js](https://nodejs.org) - on Linux, we recommend using [nvm](https://github.com/nvm-sh/nvm) to install an up-to-date version. - [Yarn](https://yarnpkg.com) - once Node.js is installed, you can install Yarn via `npm install -g yarn` - On Linux, you will need at least the `openssl` and `libcurl` packages. On Debian-based distributions, you will need to install `libcurl4` or `libcurl3` instead of `libcurl`, depending on the age of your distribution. For example: ```shell # Ubuntu 18.04 sudo apt install libcurl4 openssl # Fedora 32 sudo dnf install libcurl openssl ``` ### Installation We strongly recommend that you install FiftyOne in a [virtual environment](https://voxel51.com/docs/fiftyone/getting_started/virtualenv.html) to maintain a clean workspace. The install script is only supported in POSIX-based systems (e.g. Mac and Linux). 1. Clone the repository: ```shell git clone --recursive https://github.com/voxel51/fiftyone cd fiftyone ``` 2. Run the installation script: ```shell bash install.bash ``` **NOTE:** The install script adds to your `nvm` settings in your `~/.bashrc` or `~/.bash_profile`, which is needed for installing and building the App **NOTE:** When you pull in new changes to the App, you will need to rebuild it, which you can do either by rerunning the install script or just running `yarn build` in the `./app` directory. ### Upgrading your source installation To upgrade an existing source installation to the bleeding edge, simply pull the latest `develop` branch and rerun the install script: ```shell git checkout develop git pull bash install.bash ``` ### Developer installation If you would like to [contribute to FiftyOne](https://github.com/voxel51/fiftyone/blob/develop/CONTRIBUTING.md), you should perform a developer installation using the `-d` flag of the install script: ```shell bash install.bash -d ``` ### Source installs in Google Colab You can install from source in [Google Colab](https://colab.research.google.com) by running the following in a cell and then **RESTARTING THE RUNTIME**: ```shell %%shell git clone --depth 1 https://github.com/voxel51/fiftyone.git cd fiftyone bash install.bash ``` ### Generating documentation See the [docs guide](https://github.com/voxel51/fiftyone/blob/develop/docs/docs_guide.md) for information on building and contributing to the documentation. ## Uninstallation You can uninstall FiftyOne as follows: ```shell pip uninstall fiftyone fiftyone-brain fiftyone-db fiftyone-desktop ``` ## Citation If you use FiftyOne in your research, feel free to cite the project (but only if you love it 😊): ```bibtex @article{moore2020fiftyone, title={FiftyOne}, author={Moore, B. E. and Corso, J. J.}, journal={GitHub. Note: https://github.com/voxel51/fiftyone}, year={2020} } ```


نیازمندی

مقدار نام
- aiofiles
- argcomplete
- boto3
- Deprecated
- eventlet
- future
>=7.0.0 ipywidgets
- Jinja2
- kaleido
- matplotlib
==0.20.0 mongoengine
<3,>=2.3 motor
- numpy
- opencv-python-headless
- packaging
- pandas
>=6.2 Pillow
<5,>=4.14 plotly
- pprintpp
- psutil
<4,>=3.11 pymongo
- pytz
- PyYAML
- retrying
- scikit-learn
- scikit-image
- setuptools
- tabulate
<7,>=5.1.1 tornado
- xmltodict
<2,>=1.0.1 universal-analytics-python3
<0.7,>=0.6.1 voxel51-eta
<0.8,>=0.7.2 fiftyone-brain
<0.4,>=0.3 fiftyone-db
<0.20,>=0.19.1 fiftyone-desktop


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl fiftyone-eval-only-0.14.3:

    pip install fiftyone-eval-only-0.14.3.whl


نصب پکیج tar.gz fiftyone-eval-only-0.14.3:

    pip install fiftyone-eval-only-0.14.3.tar.gz