معرفی شرکت ها


fiddler-client-2.0.0.dev1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python client for Fiddler Service
ویژگی مقدار
سیستم عامل -
نام فایل fiddler-client-2.0.0.dev1
نام fiddler-client
نسخه کتابخانه 2.0.0.dev1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Fiddler Labs
ایمیل نویسنده -
آدرس صفحه اصلی https://fiddler.ai
آدرس اینترنتی https://pypi.org/project/fiddler-client/
مجوز -
Fiddler Client ============= Python client for interacting with Fiddler. Provides a user-friendly interface to our REST API and enables event publishing for use with our monitoring features. Requirements ------------ Requires Python >= Python-3.6.3 and pip >= 19.0 Installation ------------ $ pip3 install fiddler-client API Example Usage ------------- Documentation for the API can be found [here](https://api.fiddler.ai/#introduction). For examples of interacting with our APIs, please check out our [Quick Start Guide](https://docs.fiddler.ai/quick-start/) as well as the work notebooks found on our [Samples Github](https://github.com/fiddler-labs/fiddler-samples). Version History ------------- ### 1.7.3 - #### **Modification** - Send row and column count information to dataset upload api ### 1.7.2 - #### **Modification** - Bring back `WeightingParams` object ### 1.7.1 - #### **Modification** - Relaxed boto3 version constraint ### 1.7.0 - #### **Removed** - Remove support for initializing fiddler client with version=1 - Following methods are removed - get_segment_info - delete_segment - deactivate_segment - activate_segment - list_segments - upload_segment - add_monitoring_config - publish_parquet_s3 - publish_events_log ### 1.6.2 - #### **Modifications** - Make dataset_id a required field in add_model() - Update max_inferred_cardinality to 100 - #### **New Features** - New method for updating a model artifact `update_model_artifact` ### 1.5.3 - #### **Modifications** - Fix add_model_artifact error for NLP models - Add model_info validation during add_model ### 1.5.2 - #### **Modifications** - Adds fix for self signed certificate not working by adding verify param to FiddlerApi ### 1.5.1 - #### **Modifications** - Fix in `violation_of_type` to include numpy dtypes such as `int64` ### 1.5.0 - #### **New Features** - New methods addition for alert rules: `add_alert_rule`, `get_alert_rules`, `delete_alert_rule` - New method to get triggered alerts for an alert rule: `get_triggered_alerts` ### 1.4.5 - #### **Modifications** - Assert nullable columns in `missing_value_encodings`(If users send non-nullable columns as `missing_value_encodings`, Fiddler converts them as nullable automatically with a warning) ### 1.4.4 - #### **Modifications** - Allow types other than `Column data_type` for `missing_value_encodings`. ### 1.4.3 - #### **Modifications** - Accept `string` `'inf'` in `float` columns in `missing_value_encodings`. ### 1.4.2 - #### **New Features** - Support `missing_value_encodings` as a new field of `model_info` object. ### 1.4.1 - #### **Modifications** - Minor bug fix to handle string nan ### 1.4.0 - #### **Modifications** - Default client initiation is now the v2 client - `publish_events_batch` is now async, returns status id and doesn't wait for the upload to complete. - Default behavior of all publish data in v2 client is async (`is_sync = False`) ### 1.3.0 - #### **New Features** - New capabilities for Artifact-less Monitoring ### 1.2.8 - ### **Modifications** - Change the `batch_size` argument default to 1000 for `trigger_pre_computation` - Updated the `delete_model` API default value for the `delete_prod` parameter from False to True. - We will by default delete all the events associated with the model. ### 1.2.7 - ### **Modifications** - Added check for "model" key before access in from_dict - Allow changing artifact_status when updating the model - Adds docstrings for add_model, add_model_surrogate and add_model_artifact ### 1.2.6 - ### **Modifications** - Fixed publish_events_batch_schema backward compatible. ### 1.2.5 - ### **Modifications** - Added add_model_surrogate and add_model_artifact APIs for artifactless monitoring - Simplifies the add_model API by removing unnecessary parameters - Fixed publish_events_batch_schema parameter names. ### 1.2.4 - ### **Modifications** - Fixed a type coercion bug that caused some get_slice calls to fail cryptically ### 1.2.3 - ### **Modifications** - Map Tree shap values from log odds space to probability space - Added add_model API for artifactless monitoring - Fixed bug in request when creating a model using add_model ### 1.2.2 - ### **Modifications** - Fixed a bug that prevented importing the client in some environments. ### 1.2.1 - ### **Modifications** - Removed unnecessary server-client version check that produced an uninformative warning. ### 1.2.0 - #### **New Features** - New `WeightingParams` object. This enables weighted histograms for class-imbalanced models. - #### **Modifications** - `update_model` allows some small modifications in model info for the following fields: custom_explanation_names, preferred_explanation_method, display_name, description, framework, algorithm and model_deployment_params ### 1.1.0 - #### **New Features** - Add v2 client. v2 methods can be accessed either via sub-module (`client.v2.`) or by instantiating the `FiddlerApi` and passing `version=2`. - #### **Modifications** - Remove handlers from root logger - Add url, org_id, auth_token and version validation while instantiating client - Fix dataset ingestion file extension issue - init monitoring issue - Fix publish_event request header bug - Add `publish_events_batch_dataframe` and `upload_dataset_dataframe` methods - Support for DatasetInfo class - Using `http_client` package. A wrapper over `requetsts`. ### 1.0.6 - #### **Modifications** - Add client v2 sub-package. ### 1.0.5 - ##### **Modifications** - relax the version requirements for `requests`. - adds flag to init_monitoring to enable synchronous initialization ### 1.0.4 - ##### **Modifications** - Fixed the JSON transformation issue which was forcing `requests` package upgrade issue ### 1.0.3 - ##### **New Features** - Tree SHAP Helper. - ##### **Modifications** - `fdl.ModelInfo` has an additional optional parameter to enabled Tree Shap ### 1.0.2 - ##### **New Features** - Integrated Gradients Keras TF2 Helpers. - ##### **Modifications** - Relax `botocore` version requirements. ### 1.0.1 - ##### **Modifications** - Minor bug fixes and improvements. - `run_explanation` has two additional optional arguments (`n_permutation` and `n_background`) allowing users to change the default parameters for Fiddler SHAP explanations. ### 1.0.0 Inaugural client for Fiddler 22.0! This version includes numerous improvements for stability, performance, and usability. Compatible with server versions >=22.0.0. ### 0.8.1.8 - ##### **Modifications** - Minor bug fixes and improvements. ### 0.8.1.7 - ##### **Modifications** - Minor bug fixes and improvements. ### 0.8.1.6 - ##### **Modifications** - Add a parameter in list_projects API to get detailed project information - Minor bug fix for the datetime format. ### 0.8.1.5 - ##### **Modifications** - Add a parameter in list_projects API to get detailed project information - Allow `run_explanation` api call to pass a list of explanation with `ig_flex` and one of the shap algorithm ### 0.8.1.4 - ##### **Modifications** - Minor bugfix for categorical feature drift ### 0.8.1.3 - ##### **Modifications** - Addressed an issue with categorical features with string literals containing numeric content ### 0.8.1.2 - ##### **Modifications** - Implement a ranking surrogate model for ranking task models ### 0.8.1.1 - ##### **Modifications** - change the dependecy of requests package to 0.25.1 ### 0.8.1 - ##### **Modifications** - Improved `SegmentInfo` validation. - make the dependency versions less strict. ### 0.8.0 - ##### **New Features** - New `publish_events_batch_schema` API call, Publishes a batch events object to Fiddler Service using the passed `publish_schema` as a template. - New Ranking Monitoring capability available with publish_events_batch API - ##### **Modifications** - Enforced package versions in setup.py - `trigger_pre_computation` has an additional optional argument (`cache_dataset`) to enable/disable dataset histograms caching. - `register_model` has 3 additional optional arguments to enable/disable pdp caching (set to False by default), feature importance caching (set to True by default) and dataset histograms caching (set to True by default). ### 0.7.6 - ##### **New Features** - New segment monitoring related functionality (currently in preview): - Ability to create and validate `SegmentInfo` objects, - `upload_segment` BE call, - `activate_segment` BE call, - `deactivate_segment` BE call, and - `list_segments` BE call, - ##### **Modifications** - Upon connecting to the server, the client now performs a version check for the *server* by default. Earlier the default was to only do a version check for the client. ### 0.7.5 - ##### **New Features** - New `update_event` parameter for `publish_events_batch` API. - Changes to `fdl.publish_event()`: - Renamed parameter `event_time_stamp` to `event_timestamp` - Added new parameter: `timestamp_format` - Allows specification of timestamp format using the `FiddlerTimestamp` class ### 0.7.4 - ##### **New Features** - New `initialize_monitoring` API call, sets up monitoring for a model. Intended to also work retroactively for legacy schema. - ##### **Modifications** - Modified `DatasetInfo.from_dataframe` and `ModelInfo.from_dataset_info` to take additional `dataset_id` as parameter. - Modified the `outputs` parameter of `ModelInfo.from_dataset_info` to now expect a dictionary in case of regression tasks, specifying output range. - Modified the `preferred_explanation_method` parameter of `ModelInfo.from_dataset_info` to accept string names from `custom_explanation_names`. Details in docstring. - Misc bug fixes and documentation enhancements. ### 0.7.3 - ##### **New Features** - Changed the default display for `ModelInfo` and `DatasetInfo` to render HTML instead of plaintext, when accessed via jupyter notebooks - Added support for GCP Storage ingestion of log events using `fdl.BatchPublishType.GCP_STORAGE` ### 0.7.2 - ##### **New Features** - Restructured the following arguments for `fdl.ModelInfo.from_dataset_info()` - Added: `categorical_target_class_details`: - Mandatory for Multiclass classification tasks, optional for Binary (unused for Regression) - Used to specify the positive class for Binary classification, and the class order for Multiclass classification - Modified: `target`: - No longer optional, models must specify target columns ### 0.7.1 - ##### **New Features** - Restructured the following arguments for `fdl.publish_events_batch()` - Added: `id_field`: - Column to extract `id` value from - Added: `timestamp_format`: - Format of timestamp within batch object. Can be one of: - `fdl.FiddlerTimestamp.INFER` - `fdl.FiddlerTimestamp.EPOCH_MILLISECONDS` - `fdl.FiddlerTimestamp.EPOCH_SECONDS` - `fdl.FiddlerTimestamp.ISO_8601` Removed: `default_timestamp` - Minor bug fixes - ##### **Deprecation Warning** - Support `fdl.publish_events_log` and `fdl.publish_parquet_s3` will soon be deprecated in favor of `fdl.publish_events_batch()` ### 0.7.0 - ##### **Dataset Refactor** - Datasets refactored to be members of a Project - *This is a change promoting Datasets to be first class within Fiddler. It will affects both the UI and several API in Fiddler* - Many API utilizing Projects will now require `project_id` passed as a parameter - ##### **New Features** - Added `fdl.update_model()` to client - *update the specified model, with model binary and package.py from the specified model_dir* - Added `fdl.get_model()` to client - *download the model binary, package.py and model.yaml to the given output dir.* - Added `fdl.publish_events_batch()` to client - *Publishes a batch events object to Fiddler Service.* - *Note: Support for other batch methods including `fdl.publish_events_log()` and `fdl.publish_parquet_s3()` will be deprecated in the near future in favor of `fdl.publish_events_batch()`* - ##### **Changes** - Simplified logic within `fld.upload-dataset()` - Added client/server handshake for checking version compatibilities - *Warning issued in case of mismatch* - Deleted redundant APIs - `fdl.create_surrogate_model()` - `fdl.upload_model_sklearn()` - Restructured APIs to be more duck typing-friendly (relaxing data type restrictions) - Patches for minor bug-fixes ### 0.6.18 - ##### **Features** - Minor updates to ease use of binary classification labels ### 0.6.17 - ##### **Features** - Added new arguments to `ModelInfo.from_dataset_info()` - `preferred_explanation_method` to express a preferred default explanation algorithm for a model - `custom_explanation_names` to support user-provided explanation algorithms which the user will implement on their model object via package.py. ### 0.6.16 - ##### **Features** - Minor improvements to `publish_events_log()` to circumvent datatype conversion issues ### 0.6.15 - ##### **Features** - Added strict name checks ### 0.6.14 - ##### **Features** - Added client-native multithreading support for `publish_events_log()` using new parameters `num_threads` and `batch_size` ### 0.6.13 - ##### **Features** - Added `fdl.generate_sample_events()` to client - *API for generating monitoring traffic to test out Fiddler* - Added `fdl.trigger_pre_computation()` to client - *Triggers various precomputation steps within the Fiddler service based on input parameters.* - Optionally add proxies to FiddlerApi() init ### 0.6.12 - ##### **Features** - Added `fdl.publish_parquet_s3()` to client - *Publishes parquet events file from S3 to Fiddler instance. Experimental and may be expanded in the future.* ### 0.6.10 - ##### **Features** - Added `fdl.register_model()` to client - *Register a model in fiddler. This will generate a surrogate model, which can be replaced later with original model.*


نیازمندی

مقدار نام
- Werkzeug
- boto3
- deepdiff
==1.2.13 deprecated
==2.1.0 deprecation
- fastavro
- importlib-resources
- packaging
<=1.5.3,>=1.2.5 pandas
>=21.0 pip
>=3.0.0 pyarrow
>=1.9.0 pydantic
- pyyaml
- requests-toolbelt
<3 requests
<3,>=2 semver
==4.64.1 tqdm


زبان مورد نیاز

مقدار نام
>3.6.3 Python


نحوه نصب


نصب پکیج whl fiddler-client-2.0.0.dev1:

    pip install fiddler-client-2.0.0.dev1.whl


نصب پکیج tar.gz fiddler-client-2.0.0.dev1:

    pip install fiddler-client-2.0.0.dev1.tar.gz