معرفی شرکت ها


fiat-tool-0.7.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fast Image Annotation Tool, Free image labeling tool for deep learning
ویژگی مقدار
سیستم عامل -
نام فایل fiat-tool-0.7.0.9
نام fiat-tool
نسخه کتابخانه 0.7.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده FIAT Development Team
ایمیل نویسنده fiattool2022@gmail.com
آدرس صفحه اصلی https://github.com/gellston/FIAT-Release
آدرس اینترنتی https://pypi.org/project/fiat-tool/
مجوز MIT
<img src="https://github.com/gellston/FIAT-Release/blob/main/snapshoot/icons8_price_tag_96px.png?raw=true" width=40 height=40></img> FIAT 0.7 (Fast Image Annotation Tool) ======================= FIAT is a free image labeling tool developed in C# WPF based on Visual Studio 2022 <br/> The current version supports labeling classification datasets and provides a PyTorch dataset loader. Development Environment ======================= - **Visual Studio 2022** - **Microsoft .NET 6** Installation ======================= ``` console pip install fiat-tool ``` Download ======================= - <a href="https://github.com/gellston/FIAT-Release/releases/download/0.6/FIAT.exe" target="_blank">FIAT Labeling tool download</a> - <a href="https://dotnet.microsoft.com/en-us/download/dotnet/thank-you/runtime-desktop-6.0.2-windows-x64-installer" target="_blank">.NET6 framework</a> Reference ======================= - <a href="https://github.com/gellston/FIAT-Release/tree/main/example_dataset" target="_blank">FIAT dataset example</a> - <a href="https://github.com/gellston/FIAT-Release/blob/main/python/torch_classification_FIATC_test.py" target="_blank">PyTorch training loop example (classification)</a> DEMO ======================= - Classification <center> <img src="https://github.com/gellston/FIAT-Release/blob/main/snapshoot/FIAT-example.gif?raw=true"></img> </center> Menu ======================= <center> <img src="https://github.com/gellston/FIAT-Release/blob/0.7/snapshoot/how%20to%20use%20and%20shortcut%20key.jpg?raw=true"></img> </center> | No | Function | No | Function | |---|---|---|---| | ***1*** | ***Open image folder*** | ***2*** | ***Save dataset*** | | ***3*** | ***Add target label*** | ***4*** | ***Delete target label*** | | ***5*** | ***Add label*** | ***6*** | ***Delete label*** | | ***7*** | ***Add label on all*** | ***8*** | ***Delete label on all*** | | ***9*** | ***Previous image*** | ***10*** | ***Nex image*** | | ***11*** | ***Progress bar*** | | | Shortcut Key ======================= | Shortcut Key | Function | |---|---| | <kbd>F1</kbd> ~ <kbd>F12</kbd> | ***Label the image with the target label at that index*** | | <kbd>Ctrl</kbd> + <kbd>S</kbd> | ***Save all label information*** | | <kbd>Ctrl</kbd> + <kbd>O</kbd> | ***Open image folder*** | | <kbd>Up</kbd> | ***Previous image*** | | <kbd>Down</kbd> | ***Next image*** | PyTorch training loop example ======================= ``` python from fiat_tool.FIATClassificationDataset import FIATClassificationDataset from torch.utils.data import DataLoader batch_size = 1 training_epochs = 1 datasets = FIATClassificationDataset('C://Github//FIAT//example_dataset//food//', label_height=224, label_width=224, isColor=True, isNorm=False) data_loader = DataLoader(datasets, batch_size=batch_size, shuffle=True) for epoch in range(training_epochs): # 앞서 training_epochs의 값은 15로 지정함. avg_cost = 0 avg_acc = 0 total_batch = len(data_loader) for x_input, y_input in data_loader: print('x_input shape = ', x_input.shape) print('y_input shape = ', y_input.shape) print('Training loop finished') ``` ``` console C:\Python\python.exe C:/Github/FIAT/python/torch_classification_FIATC_test.py {'Color': '#FFFF0000', 'Name': 'Bread'} {'Color': '#FF008000', 'Name': 'Pizza'} {'Color': '#FFFFFFFF', 'Name': 'Hamburger'} {'Color': '#FFF79646', 'Name': 'Chicken'} x_input shape = torch.Size([1, 3, 224, 224]) y_input shape = torch.Size([1, 4]) x_input shape = torch.Size([1, 3, 224, 224]) y_input shape = torch.Size([1, 4]) ``` Strcture ======================= ### Classification <img src="https://github.com/gellston/FIAT-Release/blob/main/snapshoot/snapshot1.jpg?raw=true"></img> - __target_info.json - File containing representative label information ```json [ { "Color":"#FFFF0000", "Name":"Bread" }, { "Color":"#FF008000", "Name":"Pizza" }, { "Color":"#FFFFFFFF", "Name":"Hamburger" }, { "Color":"#FFF79646", "Name":"Chicken" } ] ``` - (each file).json - A file containing user-labeled information about an image. ```json { "FileName":"1_1_bread.jpg", "FilePath":"C:\\Users\\Fiat\\Desktop\\food\\1_1_bread.jpg", "ClassCollection":[ { "Color":"#FFFF0000", "Name":"Bread" } ] } ``` <div style="text-align: right; margin-right:30px;"> [TOP](#vision-studio) </div> ``` The MIT License (MIT) Copyright (c) 2022-present FIAT Development Team Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` <div style="text-align: right; margin-right:30px;"> [TOP](#vision-studio) </div>


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl fiat-tool-0.7.0.9:

    pip install fiat-tool-0.7.0.9.whl


نصب پکیج tar.gz fiat-tool-0.7.0.9:

    pip install fiat-tool-0.7.0.9.tar.gz