معرفی شرکت ها


ffeature-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tools to easily generate features using ftable
ویژگی مقدار
سیستم عامل -
نام فایل ffeature-0.0.4
نام ffeature
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده bib_inf
ایمیل نویسنده contact.bibinf@gmail.com
آدرس صفحه اصلی https://github.co.jp/
آدرس اینترنتی https://pypi.org/project/ffeature/
مجوز CC0 v1.0
# ffeature 下の方に日本語の説明があります ## Overview - Tools to easily generate features using ftable ## Example usage ```python import ffeature # Feature definition [ffeature] @ffeature.add_feature("player_score") def player_score_feature(rec, ftable_dic): one_player = ftable_dic["player_ft"].cfilter("name", rec["name"]) if len(one_player.data) != 1: raise Exception("[error] player unique constraint error") return one_player.data[0]["player_score"] # Feature definition [ffeature] @ffeature.add_feature("field") def field_feature(rec, ftable_dic): return rec["field"] # When defining multiple types of features together, wrapping def in a for statement tends to cause problems with the external variable binding function (closure) when defining a function, so the following method is recommended: defining a function in the form of a "function to define features" and calling it from the outside. def gen_simple_feature(key): @ffeature.add_feature("simple_feature_%s"%key) def field_feature(rec, ftable_dic): return rec[key] for key in ["field", "game_difficulty"]: gen_simple_feature(key) # List of tables used to create features ftable_dic = { "game_ft": ftable.FTable([ {"name": "taro", "game_difficulty": 1.2, "field": "A"}, {"name": "yusuke", "game_difficulty": 1.5, "field": "A"}, {"name": "yusuke", "game_difficulty": 1.3, "field": "B"}, {"name": "taro", "game_difficulty": 1.3, "field": "B"}, {"name": "taro", "game_difficulty": 1.0, "field": None}, ]), "player_ft": ftable.FTable([ {"name": "taro", "player_score": 120}, {"name": "yusuke", "player_score": 150}, ]) } # Create a feature table for the entire dataset (created according to the add_feature decorator) [ffeature] feature_ft = ffeature.gen_feature_table( ftable_dic = ftable_dic, # List of tables used to create features rec_table = ftable_dic["game_ft"], # Table representing the records unit of the output ftable sorted_keys = [] # Specification of ftable's sorted_keys ) print(feature_ft) # Process missing values [ffeature] feature_ft = ffeature.handle_missing( feature_ft, mode = "delete", # delete: Skip rows with any missing values missing_values = [None] # Values to be treated as missing values ) print(feature_ft) # Split data rec_filter = lambda rec: (rec["field"] == "A") partial_ft = ffeature.data_filter(feature_ft, rec_filter) # Extract records from ft that meet the condition [ffeature] print(partial_ft) ``` ## 概要 - ftableを使って特徴量を簡単に生成できるツール ## 使用例 ```python import ffeature # 特徴量定義 [ffeature] @ffeature.add_feature("player_score") def player_score_feature(rec, ftable_dic): one_player = ftable_dic["player_ft"].cfilter("name", rec["name"]) if len(one_player.data) != 1: raise Exception("[error] player unique constraint error") return one_player.data[0]["player_score"] # 複数種類の特徴量をまとめて定義する際は、defをfor文にくるんでしまうと関数定義時の外部変数束縛機能 (closure機能) で不具合が起きやすいので、下記のように「特徴量を定義する関数」の形で定義して外から呼ぶ方法が推奨です。 def gen_simple_feature(key): @ffeature.add_feature("simple_feature_%s"%key) def field_feature(rec, ftable_dic): return rec[key] for key in ["field", "game_difficulty"]: gen_simple_feature(key) # 特徴量作成に利用するテーブルの一覧 ftable_dic = { "game_ft": ftable.FTable([ {"name": "taro", "game_difficulty": 1.2, "field": "A"}, {"name": "yusuke", "game_difficulty": 1.5, "field": "A"}, {"name": "yusuke", "game_difficulty": 1.3, "field": "B"}, {"name": "taro", "game_difficulty": 1.3, "field": "B"}, {"name": "taro", "game_difficulty": 1.0, "field": None}, ]), "player_ft": ftable.FTable([ {"name": "taro", "player_score": 120}, {"name": "yusuke", "player_score": 150}, ]) } # 全量に対する特徴量テーブルを作成 (add_feature デコレータに従って作成) [ffeature] feature_ft = ffeature.gen_feature_table( ftable_dic = ftable_dic, # 特徴量作成に利用するテーブルの一覧 rec_table = ftable_dic["game_ft"], # 作成するデータのレコード単位を規定するテーブル sorted_keys = [] # ftableのsorted_keysの指定 ) print(feature_ft) # 欠損値を処理 [ffeature] feature_ft = ffeature.handle_missing( feature_ft, mode = "delete", # delete: 1つでも欠損値がある行をスキップする missing_values = [None] # 欠損値として扱う値 ) print(feature_ft) # データの分割 rec_filter = lambda rec: (rec["field"] == "A") partial_ft = ffeature.data_filter(feature_ft, rec_filter) # ftから条件を満たすレコードを抽出 [ffeature] print(partial_ft) ```


نیازمندی

مقدار نام
- ftable
- ezpip
>=1.2.1 sout
- tqdm
- erf


نحوه نصب


نصب پکیج whl ffeature-0.0.4:

    pip install ffeature-0.0.4.whl


نصب پکیج tar.gz ffeature-0.0.4:

    pip install ffeature-0.0.4.tar.gz