معرفی شرکت ها


fetcha-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Talk to SSB using Python.
ویژگی مقدار
سیستم عامل -
نام فایل fetcha-0.0.2
نام fetcha
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Feda Curic
ایمیل نویسنده feda.curic@gmail.com
آدرس صفحه اصلی https://github.com/dafeda/fetcha
آدرس اینترنتی https://pypi.org/project/fetcha/
مجوز -
# fetcha Talk to SSB using Python. ```python import fetcha as fetcha import logging # Turn off INFO-warnings logging.getLogger().setLevel(logging.WARNING) ``` ## Installation ```python # >> pip install git+https://github.com/dafeda/fetcha.git --upgrade ``` ```python # Instantiate object with specific table_id that refers to a SSB-table. # 10945 refers to Monetary aggregates M1, M2 and M3: # https://www.ssb.no/en/statbank/table/10945 ssb_10945 = fetcha.SSB("10945", language="en") ``` ```python # Number of rows in table. ssb_10945.nrows_tot() ``` 1422 ```python # Number of rows per period. ssb_10945.nrows_period() ``` 9 ```python # Get all available periods periods = ssb_10945.periods() periods[-7:] ``` ['2020M08', '2020M09', '2020M10', '2020M11', '2020M12', '2021M01', '2021M02'] ```python # Fetch latest period. # Returns a pandas dataframe with its index set with verify_integrity set to True. # If the dataframe is lacking an index, it means that the index columns do not make up a unique combination. df_latest = ssb_10945.fetch() df_latest.head() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th></th> <th>value</th> </tr> <tr> <th>contents</th> <th>month</th> <th></th> </tr> </thead> <tbody> <tr> <th>Monetary aggregate M1. Stocks (NOK million)</th> <th>2021M02</th> <td>2526071.0</td> </tr> <tr> <th>Monetary aggregate M2. Stocks (NOK million)</th> <th>2021M02</th> <td>2695383.0</td> </tr> <tr> <th>Monetary aggregate M3. Stocks (NOK million)</th> <th>2021M02</th> <td>2697783.0</td> </tr> <tr> <th>Monetary aggregate M1. Transactions last 12 months (NOK million)</th> <th>2021M02</th> <td>359029.0</td> </tr> <tr> <th>Monetary aggregate M2. Transactions last 12 months (NOK million)</th> <th>2021M02</th> <td>343687.0</td> </tr> </tbody> </table> </div> ```python # Fetch list of periods df_periods = ssb_10945.fetch(["2019M12", "2020M01", "2020M02"]) df_periods.head() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th></th> <th>value</th> </tr> <tr> <th>contents</th> <th>month</th> <th></th> </tr> </thead> <tbody> <tr> <th rowspan="3" valign="top">Monetary aggregate M1. Stocks (NOK million)</th> <th>2019M12</th> <td>2159770.0</td> </tr> <tr> <th>2020M01</th> <td>2182450.0</td> </tr> <tr> <th>2020M02</th> <td>2175681.0</td> </tr> <tr> <th rowspan="2" valign="top">Monetary aggregate M2. Stocks (NOK million)</th> <th>2019M12</th> <td>2345545.0</td> </tr> <tr> <th>2020M01</th> <td>2364841.0</td> </tr> </tbody> </table> </div> ```python # Fetch whole year of data df_year = ssb_10945.fetch("2020") df_year.head() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th></th> <th>value</th> </tr> <tr> <th>contents</th> <th>month</th> <th></th> </tr> </thead> <tbody> <tr> <th rowspan="5" valign="top">Monetary aggregate M1. Stocks (NOK million)</th> <th>2020M01</th> <td>2182450.0</td> </tr> <tr> <th>2020M02</th> <td>2175681.0</td> </tr> <tr> <th>2020M03</th> <td>2300443.0</td> </tr> <tr> <th>2020M04</th> <td>2340381.0</td> </tr> <tr> <th>2020M05</th> <td>2374607.0</td> </tr> </tbody> </table> </div> ```python # Fetch multiple years df_years = ssb_10945.fetch(["2019", "2020"]) df_year.head() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th></th> <th>value</th> </tr> <tr> <th>contents</th> <th>month</th> <th></th> </tr> </thead> <tbody> <tr> <th rowspan="5" valign="top">Monetary aggregate M1. Stocks (NOK million)</th> <th>2020M01</th> <td>2182450.0</td> </tr> <tr> <th>2020M02</th> <td>2175681.0</td> </tr> <tr> <th>2020M03</th> <td>2300443.0</td> </tr> <tr> <th>2020M04</th> <td>2340381.0</td> </tr> <tr> <th>2020M05</th> <td>2374607.0</td> </tr> </tbody> </table> </div> ```python # Reset index before pivoting df_year = df_year.reset_index().pivot(index="month", columns="contents") df_year.head() ``` <div> <table border="1" class="dataframe"> <thead> <tr> <th></th> <th colspan="9" halign="left">value</th> </tr> <tr> <th>contents</th> <th>Monetary aggregate M1. 12-month growth (per cent</th> <th>Monetary aggregate M1. Stocks (NOK million)</th> <th>Monetary aggregate M1. Transactions last 12 months (NOK million)</th> <th>Monetary aggregate M2. 12-month growth (per cent)</th> <th>Monetary aggregate M2. Stocks (NOK million)</th> <th>Monetary aggregate M2. Transactions last 12 months (NOK million)</th> <th>Monetary aggregate M3. 12-month growth (per cent)</th> <th>Monetary aggregate M3. Stocks (NOK million)</th> <th>Monetary aggregate M3. Transactions last 12 months (NOK million)</th> </tr> <tr> <th>month</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2020M01</th> <td>3.1</td> <td>2182450.0</td> <td>66236.0</td> <td>3.9</td> <td>2364841.0</td> <td>87622.0</td> <td>3.7</td> <td>2368402.0</td> <td>84912.0</td> </tr> <tr> <th>2020M02</th> <td>3.2</td> <td>2175681.0</td> <td>66037.0</td> <td>3.8</td> <td>2360484.0</td> <td>86360.0</td> <td>3.7</td> <td>2364033.0</td> <td>83138.0</td> </tr> <tr> <th>2020M03</th> <td>7.0</td> <td>2300443.0</td> <td>148469.0</td> <td>7.5</td> <td>2489403.0</td> <td>170692.0</td> <td>7.3</td> <td>2492801.0</td> <td>167960.0</td> </tr> <tr> <th>2020M04</th> <td>9.8</td> <td>2340381.0</td> <td>205486.0</td> <td>9.5</td> <td>2522315.0</td> <td>216155.0</td> <td>9.4</td> <td>2525731.0</td> <td>214558.0</td> </tr> <tr> <th>2020M05</th> <td>10.9</td> <td>2374607.0</td> <td>232311.0</td> <td>10.2</td> <td>2552508.0</td> <td>234581.0</td> <td>10.1</td> <td>2555817.0</td> <td>232003.0</td> </tr> </tbody> </table> </div> ```python ssb_10948 = fetcha.SSB("10948", language="en") df_10948 = ssb_10948.fetch("2020") ``` ```python df_10948.head() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th></th> <th></th> <th>value</th> </tr> <tr> <th>holding sector</th> <th>contents</th> <th>month</th> <th></th> </tr> </thead> <tbody> <tr> <th rowspan="5" valign="top">Money holding sector</th> <th rowspan="5" valign="top">Monetary aggregate M3. Stocks, seasonally adjusted (NOK million)</th> <th>2020M01</th> <td>2374459.0</td> </tr> <tr> <th>2020M02</th> <td>2387955.0</td> </tr> <tr> <th>2020M03</th> <td>2499994.0</td> </tr> <tr> <th>2020M04</th> <td>2543868.0</td> </tr> <tr> <th>2020M05</th> <td>2580435.0</td> </tr> </tbody> </table> </div> ```python # Fetch and join # Get another table so we have something to join with. ssb_10948 = fetcha.SSB("10948", language="en") df_10948 = ssb_10948.fetch("2020") df_10948 = df_10948.reset_index().pivot_table( index="month", columns="contents", aggfunc="mean" ) df_10948.join(df_year).head() ``` <div> <table border="1" class="dataframe"> <thead> <tr> <th></th> <th colspan="12" halign="left">value</th> </tr> <tr> <th>contents</th> <th>1-month growth, seasonally adjusted (per cent)</th> <th>Monetary aggregate M3. Stocks, seasonally adjusted (NOK million)</th> <th>Transactions last month, seasonally adjusted (NOK million)</th> <th>Monetary aggregate M1. 12-month growth (per cent</th> <th>Monetary aggregate M1. Stocks (NOK million)</th> <th>Monetary aggregate M1. Transactions last 12 months (NOK million)</th> <th>Monetary aggregate M2. 12-month growth (per cent)</th> <th>Monetary aggregate M2. Stocks (NOK million)</th> <th>Monetary aggregate M2. Transactions last 12 months (NOK million)</th> <th>Monetary aggregate M3. 12-month growth (per cent)</th> <th>Monetary aggregate M3. Stocks (NOK million)</th> <th>Monetary aggregate M3. Transactions last 12 months (NOK million)</th> </tr> <tr> <th>month</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2020M01</th> <td>-10.02</td> <td>949783.6</td> <td>-1329.8</td> <td>3.1</td> <td>2182450.0</td> <td>66236.0</td> <td>3.9</td> <td>2364841.0</td> <td>87622.0</td> <td>3.7</td> <td>2368402.0</td> <td>84912.0</td> </tr> <tr> <th>2020M02</th> <td>3.32</td> <td>955182.0</td> <td>3182.0</td> <td>3.2</td> <td>2175681.0</td> <td>66037.0</td> <td>3.8</td> <td>2360484.0</td> <td>86360.0</td> <td>3.7</td> <td>2364033.0</td> <td>83138.0</td> </tr> <tr> <th>2020M03</th> <td>541.24</td> <td>999997.4</td> <td>38556.4</td> <td>7.0</td> <td>2300443.0</td> <td>148469.0</td> <td>7.5</td> <td>2489403.0</td> <td>170692.0</td> <td>7.3</td> <td>2492801.0</td> <td>167960.0</td> </tr> <tr> <th>2020M04</th> <td>19.36</td> <td>1017547.0</td> <td>18928.0</td> <td>9.8</td> <td>2340381.0</td> <td>205486.0</td> <td>9.5</td> <td>2522315.0</td> <td>216155.0</td> <td>9.4</td> <td>2525731.0</td> <td>214558.0</td> </tr> <tr> <th>2020M05</th> <td>14.82</td> <td>1032174.2</td> <td>17398.2</td> <td>10.9</td> <td>2374607.0</td> <td>232311.0</td> <td>10.2</td> <td>2552508.0</td> <td>234581.0</td> <td>10.1</td> <td>2555817.0</td> <td>232003.0</td> </tr> </tbody> </table> </div> ```python # SSB has a limit of 300k rows per transaction. # Some tables have more than that in one period. ssb_10261 = fetcha.SSB("10261", language="en") ``` ```python # Gives warning and returns None. df_10261 = ssb_10261.fetch() ``` WARNING:fetcha.ssb:Query exceeds SSB limit of 300k rows per transaction. Current query tries to fetch 607104 rows. User a filter ```python # Can pass filter to fetch(), but first we need to choose what we want. # Use variable levels to see which options you have. ssb_10261.levels ``` 0 {'code': 'Region', 'text': 'region', 'values':... 1 {'code': 'Kjonn', 'text': 'sex', 'values': ['0... 2 {'code': 'Alder', 'text': 'age', 'values': ['9... 3 {'code': 'Diagnose3', 'text': 'diagnosis: Chap... 4 {'code': 'ContentsCode', 'text': 'contents', '... 5 {'code': 'Tid', 'text': 'year', 'values': ['20... Name: variables, dtype: object ```python # We limit the region to "The whole country". ssb_10261.levels.iloc[0] ``` {'code': 'Region', 'text': 'region', 'values': ['0', '30', '01', '02', '03', '34', '04', '05', '06', '38', '07', '08', '42', '09', '10', '11', '46', '12', '14', '15', '50', '16', '17', '18', '54', '19', '20', 'F00', '9', 'H03', 'H04', 'H05', 'H12', 'Uoppgitt'], 'valueTexts': ['The whole country', 'Viken', 'Østfold (-2019)', 'Akershus (-2019)', 'Oslo', 'Innlandet', 'Hedmark (-2019)', 'Oppland (-2019)', 'Buskerud (-2019)', 'Vestfold og Telemark', 'Vestfold (-2019)', 'Telemark (-2019)', 'Agder', 'Aust-Agder (-2019)', 'Vest-Agder (-2019)', 'Rogaland', 'Vestland', 'Hordaland (-2019)', 'Sogn og Fjordane (-2019)', 'Møre og Romsdal', 'Trøndelag - Trööndelage', 'Sør-Trøndelag (-2017)', 'Nord-Trøndelag (-2017)', 'Nordland', 'Troms og Finnmark - Romsa ja Finnmárku', 'Troms - Romsa (-2019)', 'Finnmark - Finnmárku (-2019)', 'Total', 'Uoppgitt', 'Helseregion Vest', 'Helseregion Midt-Norge', 'Helseregion Nord', 'Helseregion Sør-Øst', 'Unknown'], 'elimination': True} ```python fltr = [{"code": "Region", "values": ["0"]}] ``` ```python df_10261 = ssb_10261.fetch(fltr=fltr) ``` ```python df_10261.shape ``` (17856, 1) ```python df_10261.sample(10) ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>value</th> </tr> <tr> <th>region</th> <th>sex</th> <th>age</th> <th>diagnosis: Chapter in ICD-10</th> <th>contents</th> <th>year</th> <th></th> </tr> </thead> <tbody> <tr> <th rowspan="10" valign="top">The whole country</th> <th>Males</th> <th>40-59 years</th> <th>Influenza and pneumonia</th> <th>Number of day cases</th> <th>2019</th> <td>76.0</td> </tr> <tr> <th rowspan="2" valign="top">Females</th> <th>20-39 years</th> <th>Injuries of upper extremities</th> <th>Patients with day cases</th> <th>2019</th> <td>613.0</td> </tr> <tr> <th>60-69 years</th> <th>CONGENITAL MALFORMATIONS</th> <th>Number of bed-days</th> <th>2019</th> <td>290.0</td> </tr> <tr> <th rowspan="2" valign="top">Both sexes</th> <th rowspan="2" valign="top">20-39 years</th> <th>Cardiac dysrhythmias</th> <th>Patients with day cases</th> <th>2019</th> <td>276.0</td> </tr> <tr> <th>PREGNANCY, CHILDBIRTH AND THE PUERPERIUM</th> <th>Number of out-patient consultations</th> <th>2019</th> <td>109637.0</td> </tr> <tr> <th>Females</th> <th>60-69 years</th> <th>Glaucoma</th> <th>Number of day cases</th> <th>2019</th> <td>253.0</td> </tr> <tr> <th rowspan="4" valign="top">Both sexes</th> <th>Years, total</th> <th>Other maternal disorders predominantly related to pregnancy</th> <th>In-patients</th> <th>2019</th> <td>1478.0</td> </tr> <tr> <th>60-69 years</th> <th>Diabetes mellitus</th> <th>In-patients</th> <th>2019</th> <td>488.0</td> </tr> <tr> <th>70-79 years</th> <th>Other diseases of oesophagus, stomach and duodenum</th> <th>Number of bed-days</th> <th>2019</th> <td>3265.0</td> </tr> <tr> <th>0-9 years</th> <th>Malignant neoplasms of female genital organs</th> <th>Out-patients</th> <th>2019</th> <td>1.0</td> </tr> </tbody> </table> </div> ```python ```


نیازمندی

مقدار نام
- pyjstat


نحوه نصب


نصب پکیج whl fetcha-0.0.2:

    pip install fetcha-0.0.2.whl


نصب پکیج tar.gz fetcha-0.0.2:

    pip install fetcha-0.0.2.tar.gz