معرفی شرکت ها


femtools-0.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Forecast-elicitation-Mechanism
ویژگی مقدار
سیستم عامل -
نام فایل femtools-0.0.5
نام femtools
نسخه کتابخانه 0.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده thaddywu
ایمیل نویسنده thaddywu@gmail.com
آدرس صفحه اصلی https://github.com/Hermera/Forecast-elicitation-Mechanism
آدرس اینترنتی https://pypi.org/project/femtools/
مجوز -
# Forecast-elicitation-Mechanism Implement 4 papers: - Water from Two Rocks: Maximizing the Mutual Information (MCG) - Dominantly Truthful Multi-task Peer Prediction with a Constant Number of Tasks (DMI) - A Bayesian truth serum for subjective data (BTS) - Informed Truthfulness in Multi-Task Peer Prediction (CA) # Usage ## To begin You can install the package `femtools` using pip pip install femtools To begin, import femtools import numpy as np import femtools as fem ## BTS For Bayesian Truth Serum, we implemented the version with finite players. Call the function `BTS` with answers `x` and predicted frequencies `y`, score for every respondent is returned. `x` and `y` can be given in the `numpy.array` form or `list` form. If there are n respondents and m possible answers, `x` should be an n-dimensional vector and each answer in `x` should be an integer in `[0, m)`. Similarly, `y` is a `n*m` matrix denoting the predicted frequencies. BTS score is composed of information-score and prediction score, thus optional parameter alpha controlling the weight given to the prediction score could be assigned between `(0,1]`. By default, `alpha` is `1`. Here are examples >>> fem.BTS([3, 2, 1, 1, 0], ... [[0.1, 0.1, 0.3, 0.5], ... [0.1, 0.2, 0.5, 0.2], ... [0.3, 0.4, 0.2, 0.1], ... [0.3, 0.4, 0.1, 0.2], ... [0.1, 0.3, 0.2, 0.4]]) array([-3.28030172, -2.40787449, -0.29706308, -0.29706308, -1.074341 ]) >>> fem.BTS([0, 0, 0], ... [[0.5, 0.5], ... [0.5, 0.5], ... [0.5, 0.5]], alpha = 0.5) array([0.51873113, 0.51873113, 0.51873113]) ## CA For Correlated Agreement Mechanism, we implemented the detail-free version. CA Detail-Free is designed for multi-task problem with n agents and m tasks. Call the function `CA` with a `n*m` report matrix `reports`, score for every agent is returned. `reports` can be given in the `numpy.array` form or `list` form. For convenience, matrix `reports` can be given transposed with optional parameter `agent_first = False`. By default, `agent_first` is set to `True`. In addition, function `CA` does not expect that elements are integers. Here is the example >>> fem.CA([['subway', 'subway', 'subway', 'burgerK', 'burgerK', 'burgerK'], ... ['burgerK', 'McDonald', 'subway', 'McDonald', 'burgerK', 'burgerK'], ... ['burgerK', 'McDonald', 'subway', 'McDonald', 'burgerK', 'burgerK'], ... ['KFC', 'KFC', 'KFC', 'PizzaHot', 'McDonald', 'McDonald'], ... ['PizzaHot', 'PizzaHot', 'PizzaHot', 'PizzaHot', 'PizzaHot', 'McDonald'], ... ['PizzaHot', 'PizzaHot', 'PizzaHot', 'KFC', 'PizzaHot', 'subway'], ... ['McDonald', 'McDonald', 'McDonald', 'McDonald', 'McDonald', 'McDonald'], ... ['burgerK', 'burgerK', 'McDonald', 'burgerK', 'burgerK', 'burgerK'], ... ['burgerK', 'subway', 'subway', 'PizzaHot', 'subway', 'subway'], ... ['burgerK', 'burgerK', 'McDonald', 'burgerK', 'burgerK', 'burgerK'], ... ['PizzaHot', 'PizzaHot', 'PizzaHot', 'PizzaHot', 'PizzaHot', 'McDonald'], ... ], agent_first = False) array([23, 20, 12, 23, 25, 25]) ## DMI Call the function `DMI` with answers `x` and the number of choices `C`. `x` should be given in the `numpy.array` form or `list` form. If there are n agents and m tasks, `x` is a `n*m` matrix. Please make sure `m >= 2c` and each answer in `x` is an integer in `[0, c)`, otherwise the function will raise a `ValueError`. DMI scores will return in `numpy.array` form. Here is an example ``` >>> fem.DMI([[1, 1, 0, 1, 1, 0, 1, 1, 1], [1, 1, 0, 0, 1, 0, 1, 0, 1]], 2) array([1.5, 1.5]) ``` ## MCG We implemented the multi-task common ground mechanism MCG(f) for Bernoulli distribution case. Call the function `MCG` with answers, function `f` and prior. The answers should be a `2*n` matrix in `numpy.array` form or `list` form for 2 agents' prediction and all the number in answers should in `[0, 1]`. The prior is a number in `[0, 1]`, too. `f` should be in `["TVD", "KLD"]` for Total Variation Distance and KL divergence, respectively. By default, `f = "TVD"` . More functions will be supported in the future. The payments will return in `numpy.array` form. Here is an example ``` >>> fem.DMI([[0.2, 0.3, 0.2], [0.3, 0.5, 0.3]], 'TVD', 0.3) array([0.3333333333333333, 0.3333333333333333]) ```


نحوه نصب


نصب پکیج whl femtools-0.0.5:

    pip install femtools-0.0.5.whl


نصب پکیج tar.gz femtools-0.0.5:

    pip install femtools-0.0.5.tar.gz