معرفی شرکت ها


feature-stuff-0.0.dev6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Feature extraction, processing and interpretation algorithms and functions for machine learning and data science.
ویژگی مقدار
سیستم عامل -
نام فایل feature-stuff-0.0.dev6
نام feature-stuff
نسخه کتابخانه 0.0.dev6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mihaela Mares
ایمیل نویسنده mihaela.andreea.mares@gmail.com
آدرس صفحه اصلی https://github.com/hiflyin/Advanced-Feature-Stuff-Lib
آدرس اینترنتی https://pypi.org/project/feature-stuff/
مجوز -
----------------- # feature_stuff: a python machine learning library for advanced feature extraction, processing and interpretation. <table> <tr> <td>Latest Release</td> <td> <a href="https://pypi.org/project/feature-stuff/"> see on pypi.org</a> </td> </tr> <tr> <td>Package Status</td> <td> <a href="https://pypi.org/project/feature-stuff/">see on pypi.org</a> </td> </tr> <tr> <td>License</td> <td> <a href="https://github.com/hiflyin/Feature-Stuff/blob/master/LICENSE"> see on github</a> </td> </tr> <tr> <td>Build Status</td> <td> <a href="https://travis-ci.org/hiflyin/Feature-Stuff/"> see on travis </a> </td> </tr> </table> ## What is it **feature_stuff** is a Python package providing fast and flexible algorithms and functions for extracting, processing and interpreting features: **Numeric feature extraction** <table> <tr> <td>feature_stuff.add_interactions</td> <td> generic function for adding interaction features to a data frame either by passing them as a list or by passing a boosted trees model to extract the interactions from. </td> </tr> <tr> <td>feature_stuff.target_encoding</td> <td> target encoding of a feature column using exponential prior smoothing or mean prior smoothing </td> </tr> <tr> <td>feature_stuff.cv_target_encoding</td> <td> target encoding of a feature column taking cross-validation folds as input </td> </tr> <tr> <td>feature_stuff.add_knn_values</td> <td> creates a new feature with the K-nearest-neighbours of the values of a given feature </td> </tr> <tr> <td>feature_stuff.model_features_insights_extractions.add_group_values</td> <td> generic and memory efficient enrichment of features dataframe with group values </td> </tr> </table> **Model feature insights extraction** <table> <tr> <td>get_xgboost_interactions</td> <td> takes a trained xgboost model and returns a list of interactions between features, to the order of maximum depth of all trees. </td> </tr> <tr> </table> ## Installation Binary installers for the latest released version are available at the [Python package index](https://pypi.org/project/feature-stuff) . ```sh # or PyPI pip install feature_stuff ``` The source code is currently hosted on GitHub at: https://github.com/hiflyin/Feature-Stuff ## Installation from sources In the `Feature-Stuff` directory (same one where you found this file after cloning the git repo), execute: ```sh python setup.py install ``` or for installing in [development mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs): ```sh python setup.py develop ``` Alternatively, you can use `pip` if you want all the dependencies pulled in automatically (the `-e` option is for installing it in [development mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs)): ```sh pip install -e . ``` ## How to use it Below are examples for some functions. See the attached API of each function/ algorithm, for a complete documentation. # feature_stuff.add_interactions Inputs: df: a pandas dataframe model: boosted trees model (currently xgboost supported only). Can be None in which case the interactions have to be provided interactions: list in which each element is a list of features/columns in df, default: None Output: df containing the group values added to it Example on extracting interactions from tree based models and adding them as new features to your dataset. ```python import feature_stuff as fs import pandas as pd import xgboost as xgb data = pd.DataFrame({"x0":[0,1,0,1], "x1":range(4), "x2":[1,0,1,0]}) print data x0 x1 x2 0 0 0 1 1 1 1 0 2 0 2 1 3 1 3 0 target = data.x0 * data.x1 + data.x2*data.x1 print target.tolist() [0, 1, 2, 3] model = xgb.train({'max_depth': 4, "seed": 123}, xgb.DMatrix(data, label=target), num_boost_round=2) fs.addInteractions(data, model) # at least one of the interactions in target must have been discovered by xgboost print data x0 x1 x2 inter_0 0 0 0 1 0 1 1 1 0 1 2 0 2 1 0 3 1 3 0 3 # if we want to inspect the interactions extracted from feature_stuff import model_features_insights_extractions as insights print insights.get_xgboost_interactions(model) [['x0', 'x1']] ``` # feature_stuff.target_encoding Inputs: df: a pandas dataframe containing the column for which to calculate target encoding (categ_col) ref_df: a pandas dataframe containing the column for which to calculate target encoding and the target (y_col) for example we might want to use train data as ref_df to encode test data categ_col: the name of the categorical column for which to calculate target encoding y_col: the name of the target column, or target variable to predict smoothing_func: the name of the function to be used for calculating the weights of the corresponding target value inside ref_df. Default: exponentialPriorSmoothing. aggr_func: the statistic used to aggregate the target variable values inside each category of the categ_col smoothing_prior_weight: a prior weight to put on each category. Default 1. Output: df containing a new column called <categ_col + "_bayes_" + aggr_func> containing the encodings of categ_col Example on extracting target encodings from categorical features and adding them as new features to your dataset. ``` import feature_stuff as fs import pandas as pd train_data = pd.DataFrame({"x0":[0,1,0,1]}) test_data = pd.DataFrame({"x0":[1, 0, 0, 1]}) target = range(4) train_data = fs.target_encoding(train_data, train_data, "x0", target, smoothing_func=fs.exponentialPriorSmoothing, aggr_func="mean", smoothing_prior_weight=1) test_data = fs.target_encoding(test_data, train_data, "x0", target, smoothing_func=fs.exponentialPriorSmoothing, aggr_func="mean", smoothing_prior_weight=1) #train data with target encoding of "x0" print(train_data) x0 y_xx g_xx x0_bayes_mean 0 0 0 0 1.134471 1 1 1 0 1.865529 2 0 2 0 1.134471 3 1 3 0 1.865529 #test data with target encoding of "x0" print(test_data) x0 x0_bayes_mean 0 1 1.865529 1 0 1.134471 2 0 1.134471 3 1 1.865529 ``` # feature_stuff.cv_target_encoding Inputs: df: a pandas dataframe containing the column for which to calculate target encoding (categ_col) and the target categ_cols: a list or array with the the names of the categorical columns for which to calculate target encoding y_col: a numpy array of the target variable to predict cv_folds: a list with fold pairs as tuples of numpy arrays for cross-val target encoding smoothing_func: the name of the function to be used for calculating the weights of the corresponding target value inside ref_df. Default: exponentialPriorSmoothing. aggr_func: the statistic used to aggregate the target variable values inside each category of the categ_col smoothing_prior_weight: a prior weight to put on each category. Default 1. verbosity: 0-none, 1-high_level, 2-detailed Output: df containing a new column called <categ_col + "_bayes_" + aggr_func> containing the encodings of categ_col See feature_stuff.target_encoding example above. ## Contributing to feature-stuff All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.


نیازمندی

مقدار نام
>=0.19.2 pandas
>=1.12.1 numpy
>=0.18 scikit-learn
>=0.19.0 scipy
>=0.6 xgboost
xtr check-manifest;
xtr coverage;


نحوه نصب


نصب پکیج whl feature-stuff-0.0.dev6:

    pip install feature-stuff-0.0.dev6.whl


نصب پکیج tar.gz feature-stuff-0.0.dev6:

    pip install feature-stuff-0.0.dev6.tar.gz