معرفی شرکت ها


feast-teradata-1.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل feast-teradata-1.0.3
نام feast-teradata
نسخه کتابخانه 1.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Teradata Corporation
ایمیل نویسنده developers@teradata.com
آدرس صفحه اصلی https://github.com/Teradata/feast-teradata
آدرس اینترنتی https://pypi.org/project/feast-teradata/
مجوز -
# Feast Teradata Connector [![feast-teradata tests](https://github.com/Teradata/feast-teradata/actions/workflows/ci-integeration-tests.yml/badge.svg)](https://github.com/Teradata/feast-teradata/actions/workflows/ci-integeration-tests.yml) ## Overview We recommend you familiarize yourself with the terminology and concepts of feast by reading the official [feast documentation](https://docs.feast.dev/). The `feast-teradata` library adds support for Teradata as - OfflineStore - OnlineStore Additional, using Teradata as the registry (catalog) is already supported via the `registry_type: sql` and included in our examples. This means that everything is located in Teradata. However, depending on the requirements, installation, etc, this can be mixed and matched with other systems as appropriate. ## Getting Started To get started, install the `feast-teradata` library ```bash pip install feast-teradata ``` Let's create a simple feast setup with Teradata using the standard drivers dataset. Note that you cannot use `feast init` as this command only works for templates which are part of the core feast library. We intend on getting this library merged into feast core eventually but for now, you will need to use the following cli command for this specific task. All other `feast` cli commands work as expected. ```bash feast-td init-repo ``` This will then prompt you for the required information for the Teradata system and upload the example dataset. Let's assume you used the repo name `demo` when running the above command. You can find the repository files along with a file called `test_workflow.py`. Running this `test_workflow.py` will execute a complete workflow for feast with Teradata as the Registry, OfflineStore and OnlineStore. ``` demo/ feature_repo/ driver_repo.py feature_store.yml test_workflow.py ``` From within the `demo/feature_repo` directory, execute the following feast command to apply (import/update) the repo definition into the registry. You will be able to see the registry metadata tables in the teradata database after running this command. ```bash feast apply ``` To see the registry information in the feast ui, run the following command. Note the --registry_ttl_sec is important as by default it polls every 5 seconds. ```bash feast ui --registry_ttl_sec=120 ``` ## Example Usage Now, lets batch read some features for training, using only entities (population) for which we have seen an event for in the last `60` days. The predicates (filter) used can be on anything that is relevant for the entity (population) selection for the given training dataset. The `event_timestamp` is only for example purposes. ```python from feast import FeatureStore store = FeatureStore(repo_path="feature_repo") training_df = store.get_historical_features( entity_df=f""" SELECT driver_id, event_timestamp FROM demo_feast_driver_hourly_stats WHERE event_timestamp BETWEEN (CURRENT_TIMESTAMP - INTERVAL '60' DAY) AND CURRENT_TIMESTAMP """, features=[ "driver_hourly_stats:conv_rate", "driver_hourly_stats:acc_rate", "driver_hourly_stats:avg_daily_trips" ], ).to_df() print(training_df.head()) ``` The `feast-teradata` library allows you to use the complete set of feast APIs and functionality. Please refer to the official [feast quickstart](https://docs.feast.dev/getting-started/quickstart) for more details on the various things you can do. Additionally, if you want to see a complete (but not real-world), end-to-end example workflow example, see the `demo/test_workflow.py` script. This is used for testing the complete feast functionality. ## Repo Configuration A feast repository is configured via the `feature_store.yaml`. There are 3 sections in this that can be configured to use Teradata - Registry - OfflineStore - OnlineStore To configure Teradata as the `OnlineStore`, use the following configuration ```yaml online_store: type: feast_teradata.online.teradata.TeradataOnlineStore host: <host> database: <db> user: <user> password: <password> log_mech: <TDNEGO|LDAP|etc> ``` To configure Teradata as the `OfflineStore`, use the following configuration ```yaml offline_store: type: feast_teradata.offline.teradata.TeradataOfflineStore host: <host> database: <db> user: <user> password: <password> log_mech: <TDNEGO|LDAP|etc> ``` To configure Teradata as the `Registry`, configure the `registry_type` as `sql` and the path as the sqlalchemy url for teradata as follows ```yaml registry: registry_type: sql path: teradatasql://<user>:<password>@<host>/?database=<database>&LOGMECH=<TDNEGO|LDAP|etc> ``` ## Release Notes ### 1.0.2 - Doc: Improve README with details on repo configuration - Fix: Fix Github Release on CI Release ### 1.0.1 - Doc: Improve README with better getting started information. - Fix: Remove pytest from requirements.txt - Fix: Set minimum python version to 3.8 due to feast dependency on pandas>=1.4.3 - Fix: Updated feast-td types conversion ### 1.0.0 - Feature: Initial implementation of feast-teradata library


نیازمندی

مقدار نام
>=17.0.0.4 teradataml
==0.26.0 feast


زبان مورد نیاز

مقدار نام
>=3.8,<3.11 Python


نحوه نصب


نصب پکیج whl feast-teradata-1.0.3:

    pip install feast-teradata-1.0.3.whl


نصب پکیج tar.gz feast-teradata-1.0.3:

    pip install feast-teradata-1.0.3.tar.gz