معرفی شرکت ها


feast-postgres-0.2.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

PostgreSQL registry, and online and offline store for Feast
ویژگی مقدار
سیستم عامل -
نام فایل feast-postgres-0.2.5
نام feast-postgres
نسخه کتابخانه 0.2.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gunnar Sv Sigurbjörnsson
ایمیل نویسنده gunnar.sigurbjornsson@gmail.com
آدرس صفحه اصلی https://github.com/nossrannug/feast-postgres
آدرس اینترنتی https://pypi.org/project/feast-postgres/
مجوز Apache License, Version 2.0
# Feast PostgreSQL Support This repo adds PostgreSQL offline and online stores to [Feast](https://github.com/feast-dev/feast) ## Get started ### Install feast: ```shell pip install feast ``` ### Install feast-postgres: ```shell pip install feast-postgres ``` ### Create a feature repository: ```shell feast init feature_repo cd feature_repo ``` ### Online store: To configure the online store edit `feature_store.yaml` ```yaml project: feature_repo registry: data/registry.db provider: local online_store: type: feast_postgres.PostgreSQLOnlineStore # MUST be this value host: localhost port: 5432 # Optional, default is 5432 database: postgres db_schema: feature_store # Optional, default is None user: username password: password offline_store: ... ``` When running `feast apply`, if `db_schema` is set then that value will be used when creating the schema, else the name of the schema will be the value in `user`. If the schema already exists then no schema is created, but the user must have privileges to create tables and indexes as well as dropping tables and indexes. ### Offline store: To configure the offline store edit `feature_store.yaml` ```yaml project: feature_repo registry: data/registry.db provider: local online_store: ... offline_store: type: feast_postgres.PostgreSQLOfflineStore # MUST be this value host: localhost port: 5432 # Optional, default it 5432 database: postgres db_schema: my_schema user: username password: password ``` The user will need to have privileges to create and drop tables in `db_schema` since temp tables will be created when querying for historical values. ### Registry store: To configure the registry edit `feature_store.yaml` ```yaml registry: registry_store_type: feast_postgres.PostgreSQLRegistryStore path: feast_registry # This will become the table name for the registry host: localhost port: 5432 # Optional, default is 5432 database: postgres db_schema: my_schema user: username password: password ``` If the schema does not exists, the user will need to have privileges to create it. If the schema exists, the user will only need privileges to create the table. ### Example Start by setting the values in `feature_store.yaml`. Then use `copy_from_parquet_to_postgres.py` to create a table and populate it with data from the parquet file that comes with Feast. Then `example.py` can be used for the feature_store. ```python # This is an example feature definition file from google.protobuf.duration_pb2 import Duration from feast import Entity, Feature, FeatureView, ValueType from feast_postgres import PostgreSQLSource # Read data from parquet files. Parquet is convenient for local development mode. For # production, you can use your favorite DWH, such as BigQuery. See Feast documentation # for more info. driver_hourly_stats = PostgreSQLSource( query="SELECT * FROM driver_stats", event_timestamp_column="event_timestamp", created_timestamp_column="created", ) # Define an entity for the driver. You can think of entity as a primary key used to # fetch features. driver = Entity(name="driver_id", value_type=ValueType.INT64, description="driver id",) # Our parquet files contain sample data that includes a driver_id column, timestamps and # three feature column. Here we define a Feature View that will allow us to serve this # data to our model online. driver_hourly_stats_view = FeatureView( name="driver_hourly_stats", entities=["driver_id"], ttl=Duration(seconds=86400 * 1), features=[ Feature(name="conv_rate", dtype=ValueType.FLOAT), Feature(name="acc_rate", dtype=ValueType.FLOAT), Feature(name="avg_daily_trips", dtype=ValueType.INT64), ], online=True, batch_source=driver_hourly_stats, tags={}, ) ``` Then run: ```shell feast apply feast materialize-incremental $(date -u +"%Y-%m-%dT%H:%M:%S") ``` This will create the feature view table and populate if with data from the `driver_stats` table that we created in Postgres.


نیازمندی

مقدار نام
==0.19.* feast
>=2.8.3 psycopg2-binary
>=2.0.0 pyarrow
- flake8
==21.10b0 black
>=5 isort
==0.790 mypy
==0.7.0 build
==3.4.2 twine
>=6.0.0 pytest


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl feast-postgres-0.2.5:

    pip install feast-postgres-0.2.5.whl


نصب پکیج tar.gz feast-postgres-0.2.5:

    pip install feast-postgres-0.2.5.tar.gz