معرفی شرکت ها


feast-hive-0.17.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Hive support for Feast offline store
ویژگی مقدار
سیستم عامل -
نام فایل feast-hive-0.17.0
نام feast-hive
نسخه کتابخانه 0.17.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Benn Ma
ایمیل نویسنده bennmsg@gmail.com
آدرس صفحه اصلی https://github.com/baineng/feast-hive
آدرس اینترنتی https://pypi.org/project/feast-hive/
مجوز Apache License, Version 2.0
# Feast Hive Support Hive is not included in current [Feast](https://github.com/feast-dev/feast) roadmap, this project intends to add Hive support for Offline Store. For more details, can check [this Feast issue](https://github.com/feast-dev/feast/issues/1686). **The public releases have passed all integration tests, please create an issue if you got any problem.** ## Change Logs - DONE [v0.1.1] ~~I am working on the first workable version, think it will be released in a couple of days.~~ - DONE [v0.1.2] ~~Allow custom hive conf when connect to a HiveServer2~~ - DONE [v0.14.0] ~~Support Feast 0.14.x~~ - DONE [v0.17.0] ~~Support Feast 0.17.0~~ - TODO It currently supports `insert into` for uploading entity_df, which is a little inefficient, gonna add extra parameters for people who are able to provide HDFS address in next version (for uploading to HDFS). ## Quickstart #### Install feast ```shell pip install feast ``` #### Install feast-hive - Install stable version ```shell pip install feast-hive ``` - Install develop version (not stable): ```shell pip install git+https://github.com/baineng/feast-hive.git ``` #### Create a feature repository ```shell feast init feature_repo cd feature_repo ``` #### Edit `feature_store.yaml` set `offline_store` type to be `feast_hive.HiveOfflineStore` ```yaml project: ... registry: ... provider: local offline_store: type: feast_hive.HiveOfflineStore host: localhost port: 10000 # optional, default is `10000` database: default # optional, default is `default` hive_conf: # optional, hive conf overlay hive.join.cache.size: 14797 hive.exec.max.dynamic.partitions: 779 ... # other parameters online_store: ... ``` #### Create Hive Table 1. Upload `data/driver_stats.parquet` to HDFS ```shell hdfs dfs -copyFromLocal ./data/driver_stats.parquet /tmp/ ``` 2. Create Hive Table ```sql CREATE TABLE driver_stats ( event_timestamp bigint, driver_id bigint, conv_rate float, acc_rate float, avg_daily_trips int, created bigint ) STORED AS PARQUET; ``` 3. Load data into the table ```sql LOAD DATA INPATH '/tmp/driver_stats.parquet' INTO TABLE driver_stats; ``` #### Edit `example.py` ```python # This is an example feature definition file from google.protobuf.duration_pb2 import Duration from feast import Entity, Feature, FeatureView, ValueType from feast_hive import HiveSource # Read data from Hive table # Here we use a Query to reuse the original parquet data, # but you can replace to your own Table or Query. driver_hourly_stats = HiveSource( # table='driver_stats', query = """ SELECT Timestamp(cast(event_timestamp / 1000000 as bigint)) AS event_timestamp, driver_id, conv_rate, acc_rate, avg_daily_trips, Timestamp(cast(created / 1000000 as bigint)) AS created FROM driver_stats """, event_timestamp_column="event_timestamp", created_timestamp_column="created", ) # Define an entity for the driver. driver = Entity(name="driver_id", value_type=ValueType.INT64, description="driver id", ) # Define FeatureView driver_hourly_stats_view = FeatureView( name="driver_hourly_stats", entities=["driver_id"], ttl=Duration(seconds=86400 * 1), features=[ Feature(name="conv_rate", dtype=ValueType.FLOAT), Feature(name="acc_rate", dtype=ValueType.FLOAT), Feature(name="avg_daily_trips", dtype=ValueType.INT64), ], online=True, batch_source=driver_hourly_stats, tags={}, ) ``` #### Apply the feature definitions ```shell feast apply ``` #### Generating training data and so on The rest are as same as [Feast Quickstart](https://docs.feast.dev/quickstart#generating-training-data) ## Developing and Testing #### Developing ```shell git clone https://github.com/baineng/feast-hive.git cd feast-hive # creating virtual env ... pip install -e ".[dev]" # before commit make format make lint ``` #### Testing ```shell pip install -e ".[test]" pytest -n 6 --host=localhost --port=10000 --database=default ```


نیازمندی

مقدار نام
>=0.17.0 feast
>=0.15.0 impyla[kerberos]
- flake8
==19.10b0 black
>=5 isort
==0.790 mypy
==6.0.0 pytest
- pytest-xdist
==1.1 assertpy
==6.0.0 pytest
- pytest-xdist
==1.1 assertpy


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl feast-hive-0.17.0:

    pip install feast-hive-0.17.0.whl


نصب پکیج tar.gz feast-hive-0.17.0:

    pip install feast-hive-0.17.0.tar.gz