معرفی شرکت ها


fcvisualization-0.0.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

FeatureCloud Visualization
ویژگی مقدار
سیستم عامل -
نام فایل fcvisualization-0.0.0.6
نام fcvisualization
نسخه کتابخانه 0.0.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده FeatureCloud
ایمیل نویسنده balazs.orban@gnd.ro
آدرس صفحه اصلی https://github.com/FeatureCloud/fc-cluster-visualization-app
آدرس اینترنتی https://pypi.org/project/fcvisualization/
مجوز MIT
# Featurecloud Cluster Visualization app This is an interactive cluster visualization app implemented in Dash and Plotly. ## App usage This app is intended to be used in [FeatureCloud](https://featurecloud.ai) environment. It requires input data in order to generate the interactive visualization interface. The data must be in the place and in the format specified by this documentation. The app has a tabular interface consisting of: - Confounders - Distances - Clustering Quality - Scree plot - Volcano plot - Help ### Confounders tab Main features: - Cluster or client id field based clustering display - K number selector - Cluster selector - X and Y axes selector - Use pie or bar chart selector for discrete data type visualization - Confounding factors filter - Scatter plot with confidence ellipsis - Linear or logarithmic scale - Point/Lasso/Box selection - Export diagrams to png - Confounding factors diagrams - Visualize and download selected points ### Distances tab Main features: - K number selector - Cluster selector - Confounding factors filter - Clustergram ### Clustering Quality tab Main features: - K number selector - Silhouette plot - K number selector ### Scree plot tab Main features: - Display components' eigenvalue ### Volcano plot tab Main features: - Set effect sizes thresholds (vertical) - Set genome wide line threshold (horizontal) ### Help It displays this documentation. ## Input data requirements ### Expected folder structure for visual representation ``` data └───results │ └───K2 │ │ clustering.csv │ │ silhouette.csv │ └───K3 │ │ clustering.csv │ │ silhouette.csv │ └───... │ └───K<n> │ │ clustering.csv │ │ silhouette.csv │ confoundingData.csv │ confoundingData.meta │ localData.csv │ distanceMatrix.csv │ varianceExplained.csv | volcano_data.csv ``` #### Download For a better understanding an example data set can be downloaded by clicking [here](./assets/data.zip). #### Tip for running When running the app in a workflow, one can upload a zip file containing the config file and data files. It will be automatically unzipped and copied to the input directory of the app. To test this, just upload the example data set mentioned above. When running the app in a workflow, one can trigger the app to finish, by clicking the Finished button in the top right corner. This makes possible starting the next app in the workflow, if any, or stopping the workflow. Notes: - localData.csv file is mandatory. The rest of files are optional. - All files under K<n> folders (if the folder exists) are mandatory ### Delimiter The default delimiter is the ";" character. It can be overwritten in the config.yml file. ### Expected file structure #### confoundingData.csv This file contains all confounding factors related to local data. First column is the id (mandatory), followed by a maximum of 5 of columns of confounders. The confounders column names are arbitrary and must not match reserved column names: id, cluster, client_id ##### Example ```csv id;age;sex;race;height;sugar-level 1;38;F;Caucasian;159;low 2;17;F;Asian;175;low 3;40;F;African-American;162;medium 4;32;F;Indian;183;high 5;18;F;Indian;193;low ``` #### confoundingData.meta This file contains meta information about confounding factors ##### Supported data and value types: Columns: - name: the name of the confounding factor - data_type: - continous: arbitrary values - discrete: values from a predefined value set - ordinal: values from a predefined value set in ordered manner - value_type - integer - string - enumeration values in ordered manner ##### Example ```csv name;data_type;value_type age;continuous;integer sex;discrete;string race;discrete;string height;continuous;integer sugar-level;ordinal;low,medium,high ``` #### localData.csv This file contains the base values. Columns: - id: sample id (mandatory) - client_id: optional field, the app supports display of clustering on this field as well - data columns: at least 2 data columns need to be present. More than 2 data columns are supported. The column names are arbitrary and must not match reserved column names: id, cluster, client_id ##### Example ```csv id;client_id;x;y;z 1;1;-0.115257648318211;0.289555823437292;0.333954194475931 2;1;-0.226069897739012;0.293898393621215;0.130668954544708 3;1;0.0606059327164007;0.0297344961039227;0.112959671444335 4;1;0.0398616396572761;-0.37563056412847;-0.35560909629883 5;1;-0.21084222999711;0.592948181336414;-0.368794747648271 ``` #### distanceMatrix.csv This file contains distances between samples. It is of n x n dimension, where n is the number of sample data. ##### Example ```csv 1;2;3;4;5 1;0;0.53851648071345;0.509901951359278;0.648074069840786;0.141421356237309 2;0.53851648071345;0;0.3;0.331662479035541;0.608276253029822 3;0.509901951359278;0.3;0;0.244948974278318;0.509901951359278 4;0.648074069840786;0.331662479035541;0.244948974278318;0;0.648074069840786 5;0.141421356237309;0.608276253029822;0.509901951359278;0.648074069840786;0 ``` #### varianceExplained.csv This file contains the eigenvalues for components. Columns: - component: mandatory field, it contains the name of the component - eigenvalue: mandatory field, it contains the eigenvalue of the component ##### Example ```csv component;eigenvalue x;0.729624454 y;0.408507618 z;0.228507618 ``` #### clustering.csv This file contains the cluster distribution of the samples. Columns: - id: mandatory, sample id - cluster: mandatory, cluster id ##### Example ```csv id;cluster 1;1 2;1 3;1 4;1 5;1 ``` #### silhouette.csv This file contains data used to display the clusters silhouette plot. Columns: - index column, mandatory - y: mandatory, contains the value to be plotted - cluster: mandatory, contains the cluster id ##### Example ```csv x;y;cluster 1;0.369499266613275;1 2;0.783307729521766;1 3;0.0627545099705458;1 4;0.205028521828353;1 5;0.915254552382976;1 ``` #### volcano_data.csv This file contains data used to display the volcano plot. The columns are the default columns used in [Dash Bio Volcano plot library](https://dash.plotly.com/dash-bio/volcanoplot). ##### Example ```csv CHR;BP;P;SNP;ZSCORE;EFFECTSIZE;GENE;DISTANCE 1;937641;0.335343792801723;rs9697358;0.9634;-0.0946;ISG15;1068 1;1136887;0.245857131900266;rs34945898;1.1605;-0.0947;TNFRSF4;0 1;2116240;0.823285880265757;rs12034613;0.2233;-0.0741;FP7162;0 ``` ### General requirements for input data - the number of samples has to be the same in all files - the sample ids must be persistent ## Config file support The app supports setting all data file and directory paths from config file. The config.yml file should be placed in the default data directory (mnt/input/data) Example: ```yml fc-cluster-visualization-app: delimiter: ';' data-dir: 'data/exampleData' local-data-path: 'data/exampleData/localData.csv' distance-matrix-path: 'data/exampleData/distanceMatrix.csv' confounding-meta-path: 'data/exampleData/confoundingData.meta' confounding-data-path: 'data/exampleData/confoundingData.csv' variance-explained-path: 'data/exampleData/varianceExplained.csv' k-values-clustering-result-dir: 'data/exampleData/results' k-values-clustering-file-name: 'clustering.csv' k-values-silhouette-file-name: 'silhouette.csv' volcano-data-path: 'exampleData/volcano_data.csv' # all files downloaded from the browser will end up here too download-dir: 'data/exampleData/downloads' ``` If config file is not present, the app will search for data in the default folder (/mnt/input/data). Any key from the config file can be omitted, in that case the app will search in the default data directory. Keys should not be left with blank values. ## Limitations - the app supports displaying 5 confounding factors simultaneously - if more than 5 confounding factors are present in the confoundingMeta.csv file, it will display the first 5 ## Workflow When the app runs in a FeatureCloud workflow, a Finished button will be displayed in the upper right corner. Clicking on the button terminates the application, while the controller shuts down the Docker container. Also, input folder content will be copied to the output folder. ## Screenshots ### Confounders tab Confounding factors filter with scatter plot ![Confounders tab](./assets/confounders-1.png) Scatter plot with confounding factors diagrams ![Confounders tab](./assets/confounders-2.png) View selected data from scatter plot ![Confounders tab](./assets/confounders-3.png) ### Distances tab Clustergram ![Distances tab](./assets/distances.png) ### Clustering Quality tab Silhouette diagram ![Clustering Quality tab](./assets/clustering-quality.png) ### Scree plot ![Scree plot tab](./assets/scree-plot.png) ### Volcano plot ![Volcano plot tab](./assets/volcano-plot.png)


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl fcvisualization-0.0.0.6:

    pip install fcvisualization-0.0.0.6.whl


نصب پکیج tar.gz fcvisualization-0.0.0.6:

    pip install fcvisualization-0.0.0.6.tar.gz