معرفی شرکت ها


fcpgtools-2.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tools to create Flow-Conditioned Parameter Grids (FCPGs) from Flow Direction Rasters (FDRs) and arbitrary rasterized parameter data.
ویژگی مقدار
سیستم عامل -
نام فایل fcpgtools-2.0.3
نام fcpgtools
نسخه کتابخانه 2.0.3
نگهدارنده ['Xavier R Nogueira']
ایمیل نگهدارنده ['xrnogueira@limno.com']
نویسنده Theodore Barnhart
ایمیل نویسنده tbarnhart@usgs.gov
آدرس صفحه اصلی https://usgs.github.io/water-fcpg-tools/
آدرس اینترنتی https://pypi.org/project/fcpgtools/
مجوز -
Flow-Conditioned Parameter Grid (FCPG) Tools Documentation =============================================================== **For detailed documentation please reference our [ReadTheDocs site](https://usgs.github.io/water-fcpg-tools/build/html/index.html)!** Please log any issues or feature requests using [this form](https://code.usgs.gov/StreamStats/data-preparation/cpg/FCPGtools/-/issues/new?issuable_template=bug). # Getting Started ## Installation `FCPGtools` can be installed from [`PyPI`](https://pypi.org/project/fcpgtools/) into a virtual environment containing [`GDAL`](https://anaconda.org/conda-forge/gdal), and for full functionality, [`TauDEM`](https://anaconda.org/conda-forge/taudem) as well. **We strongly encourage the following installation workflow:** 1. Install the Anaconda Python Distribution or Miniconda * [Anaconda Individual Edition](https://www.anaconda.com/products/distribution) - includes `conda`, a complete Python (and R) data science stack, and the helpful Anaconda Navigator GUI. * A lighter-weight alternative is to [install Miniconda](https://docs.conda.io/en/latest/miniconda.html). 2. Use the `conda` command line to clone our lightweight `fcpgtools_base` virtual environment that contains non-Python dependencies from the [`environment.yml`](https://code.usgs.gov/StreamStats/data-preparation/cpg/FCPGtools/-/blob/master/environment.yml) file available in our repo. Either clone the repo, or just download the .yml file locally, and run the following commands: ``` conda env create -f {PATH}/environment.yml ``` * **Note:** We also provide a more robust [`environment_dev.yml`](https://code.usgs.gov/StreamStats/data-preparation/cpg/FCPGtools/-/blob/master/environment_dev.yml) virtual environment for developers containing all libraries relevant to making contributions as well as running our [example notebooks](https://code.usgs.gov/StreamStats/data-preparation/cpg/FCPGtools/-/blob/master/examples). 3. Activate the `fcpgtools_base` environment, and pip install `fcpgtools`. ``` pip install fcpgtools ``` 4. (optional) pip install optional libraries required to run our demo notebook ([`examples/v2_fcpgtools_demo.ipynb`](https://code.usgs.gov/StreamStats/data-preparation/cpg/FCPGtools/-/blob/master/examples/v2_fcpgtools_demo.ipynb)), and to leverage in-line function completion/type-hints. ``` pip install jupyterlab pip install ipympl pip install python-lsp-server pip install jupyterlab-lsp pip install pydaymet ``` ## Using FCPGtools Version 2.0 of `FCPGtools` has a "flat" architecture, meaning all functions can be accessed by importing the main `fcpgtools` module as shown in a simple example below: ```python # creating an flow accumulation raster from a Flow Direction Raster (FDR) import fcpgtools path_to_fdr = r'YOUR/PATH/HERE/fdr.tif' flow_accumulation_grid = fcpgtools.accumulate_flow( d8_fdr=path_to_fdr, ) -> xarray.DataArray ``` Please refer to our documentation's [Cookbook](https://usgs.github.io/water-fcpg-tools/cookbook.html) page for more intricate examples of usage. # Citation * **Version 2.0** was released in January, 2023. * Barnhart, T.B., Nogueira, X.R., Siefken, S.A., Schultz, A.R., Aufenkampe, A., Tomasula, P., 2023, Flow-Conditioned Parameter Grid Tools Version 2.0. * **Version 1.1** was released in September, 2022. * **Version 1.0** (IP-112996) was approved on September 3, 2020. * Barnhart, T.B., Sando, R., Siefken, S.A., McCarthy, P.M., and Rea, A.H., 2020, Flow-Conditioned Parameter Grid Tools: U.S. Geological Survey Software Release, DOI: https://doi.org/10.5066/P9W8UZ47. # Migrating from Version 1.0 Version 2.0 of `FCPGtools` is a ground-up refactor and rebuild of Version 1.0. Backwards compatibility is broken, and many work-flows have been significantly streamlined. We strongly suggest that any users accustomed to Version 1.0 reference our [updated documentation site](https://usgs.github.io/water-fcpg-tools/index.html). **A non-exhaustive list of key updates is below:** * All functions output an in-memory [`xarray.DataArray`](https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray) object, allowing for functions to be strung together into performance oriented pipelines. * [`xarray.DataArray`](https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray) objects have a variety of powerful features and optimizations. For more information please reference the library's [documentation](https://docs.xarray.dev/en/stable/getting-started-guide/why-xarray.html). * Rasters can still be saved to a local GeoTIFF file by providing a valid `.tif` path to `param:out_path`. * All functions can now accept either local string paths, local [`pathlib.Path`](https://docs.python.org/3/library/pathlib.html) objects, or in-memory [`xarray.DataArray`](https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray) objects. * Multi-band parameter grids are now supported! * Example: Passing a 12-month precipitation raster (where each month is a raster band) into [`fcpgtools.accumulate_parameter()`](https://usgs.github.io/water-fcpg-tools/functions.html#fcpgtools.tools.accumulate_parameter) will output a 12-band [`xarray.DataArray`](https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray) object. * Flow Direction Raster format conversion (i.e. ESRI -> TauDEM) is now automated behind-the-scenes. * Support for multiple "terrain engines" gives users optionality and increases dependency deprecation resiliancy. * Where necessary users can set `param:engine` to [`taudem`](https://hydrology.usu.edu/taudem/taudem5/) (default) or [`pysheds`](https://github.com/mdbartos/pysheds). * Note that the `pysheds` terrain engine is signifcantly more performant, however it currently only supports [`accumulate_flow()`](https://usgs.github.io/water-fcpg-tools/functions.html#fcpgtools.tools.accumulate_flow) and [`accumulate_parameter()`](https://usgs.github.io/water-fcpg-tools/functions.html#fcpgtools.tools.accumulate_parameter). **Please reference our markdown [`refactored_names`](examples/refactored_names.md) document for a complete mapping of Version 1.1 to Version 2.0 function names.** ## Disclaimers Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Please see [DISCLAIMER.md](DISCLAIMER.md) in the project repository. ## License Please see [LICENSE.md](LICENSE.md) in the project repository.


نیازمندی

مقدار نام
>=2023.1.0,<2024.0.0 xarray
>=1.3.4,<2.0.0 rasterio
>=0.12.2,<0.13.0 geopandas
>=1.1.0,<2.0.0 descartes
>=0.13.3,<0.14.0 rioxarray
>=0.3.3,<0.4.0 pysheds
>=0.56.4,<0.57.0 numba
==1.14.6 cffi


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl fcpgtools-2.0.3:

    pip install fcpgtools-2.0.3.whl


نصب پکیج tar.gz fcpgtools-2.0.3:

    pip install fcpgtools-2.0.3.tar.gz