معرفی شرکت ها


fasttsfeatures-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Scalable time series features computation
ویژگی مقدار
سیستم عامل -
نام فایل fasttsfeatures-0.0.9
نام fasttsfeatures
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nixtla and contributors
ایمیل نویسنده fede.garza.ramirez@gmail.com
آدرس صفحه اصلی https://github.com/Nixtla/fasttsfeatures/tree/master/
آدرس اینترنتی https://pypi.org/project/fasttsfeatures/
مجوز MIT License
# FastTSFeatures > Time-series feature extraction as a service. FastTSFeatures is an SDK to compute static, temporal and calendar variables as a service. The package serves as a wrapper for [tsfresh](https://github.com/blue-yonder/tsfresh), [tsfeatures](https://github.com/Nixtla/tsfeatures) and [holidays](https://github.com/dr-prodigy/python-holidays). Since we take care of the whole infrastructure, feature extraction becomes as easy as running a line in your python nootebooks or calling an API. ## Why? We build FastTSFeatures because we wanted an easy and fast way to extract Time Series Features without having to think about infrastructure and deployment. Now we want to see if other Data Scientists find it useful too. ## Table of contents - [FastTSFeatures](#fasttsfeatures) * [Install](#install) * [How to use](#how-to-use) + [Data Format](#data-format) + [1. Request free trial](#1-request-free-trial) + [2. Run `fasttsfeatures` on a private S3 Bucket](#2-run--fasttsfeatures--on-a-private-s3-bucket) - [2.1 Upload to S3 from python](#21-upload-to-s3-from-python) - [2.2 Run the features extraction process](#22-run-the-features-extraction-process) - [2.3 Download your results from s3](#23-download-your-results-from-s3) ## Available Features (More than 600) - 40+ Features: https://github.com/Nixtla/tsfeatures - 600+ Temporal Features: https://github.com/blue-yonder/tsfresh/ - 10 Temporal Features (lags, mean lags, std_lags) [Currently just supported for daily data] Calendar Features (distance in minutes to holidays) - Calendar features for 83 Countries https://github.com/dr-prodigy/python-holidays ## Install `pip install fasttsfeatures` ## How to use You can use FastTSFeatures by either using a completely public S3 bucket or by uploading a file to your own S3 bucket provided by us. ### Data Format Currently we only support `.csv` files. These files must include at least 3 columns, with a unique_id (identifier of each time-series) a date stamp and a value. ### 1. Request free trial Request a free trial sending an email to: fede.garza.ramirez@gmail.com and get your `BUCKET_NAME`, `API_ID` and `API_KEY`, `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`. ### 2. Run `fasttsfeatures` on a private S3 Bucket If you don´t want other people to potentially have access to your data you can run `fasttsfeatures` on a private S3 Bucket. For that you have to upload your data to a private S3 Bucket that we will provide for you; you can do this inside of python. #### 2.1 Upload to S3 from python You will need the `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` that we provided. - Import and Instantiate `TSFeatures` introducing your `BUCKET_NAME`, `API_ID` and `API_KEY`, `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`. ```python from fasttsfeatures.core import TSFeatures tsfeatures = TSFeatures(bucket_name='<BUCKET_NAME>', api_id='<API_ID>', api_key='<API_KEY>', aws_access_key_id='<AWS_ACCESS_KEY_ID>', aws_secret_access_key='<AWS_SECRET_ACCESS_KEY>') ``` - Upload your local file introducing its name. ```python s3_uri = tsfeatures.upload_to_s3(file='<YOUR FILE NAME>') ``` - Run the features extraction process You can run temporal, static or calendar features on the data you uploaded. To run the process specify: - `s3_uri`: S3 uri provided after calling `tsfeatures.upload_to_s3()`. - `freq`: Integer where > {'Hourly':24, 'Daily': 7, 'Monthly': 12, 'Quarterly': 4, 'Weekly':52, 'Yearly': 1}.- `ds_column`: Name of the unique id column. - `y_column`: Name of the target column. In the case of calendar variable you have to specify the country using the [ISO](https://pypi.org/project/holidays/) code. ```python #Run Temporal Features response_tmp_ft = tsfeatures.calculate_temporal_features_from_s3_uri( s3_uri="<PRIVATE S3 URI HERE>", freq=7, # For the moment only works for Daily data. unique_id_column="<NAME OF ID COLUMN>", ds_column= "<NAME OF DATESTAMP COLUMN>", y_column="<NAME OF TARGET COLUMN>" ) #Run Static Features response_static_ft = tsfeatures.calculate_static_features_from_s3_uri( s3_uri=s3_uri, freq=7, unique_id_column="<NAME OF ID COLUMN>", ds_column= "<NAME OF DATESTAMP COLUMN>", y_column="<NAME OF TARGET COLUMN>" ) #Run Calendar Features response_cal_ft = tsfeatures.calculate_calendar_features_from_s3_uri( s3_uri=s3_uri, country="<ISO>", unique_id_column="<NAME OF ID COLUMN>", ds_column= "<NAME OF DATESTAMP COLUMN>", y_column="<NAME OF TARGET COLUMN>" ) ``` ```python response_tmp_ft ``` | | status | body | id_job | message | |---:|---------:|:----------------------------------------------|:-------------------------------------|:--------------------------------------------------| | 0 | 200 | "s3://nixtla-user-test/features/features.csv" | f7bdb6dc-dcdb-4d87-87e8-b5428e4c98db | Check job status at GET /tsfeatures/jobs/{job_id} | - Monitor the process with the following code. Once it's done, access to your bucket to download the generated features. ```python job_id = response_tmp_ft['id_job'].item() ``` ```python tsfeatures.get_status(job_id) ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>status</th> <th>processing_time_seconds</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>InProgress</td> <td>3</td> </tr> </tbody> </table> </div> #### 2.2 Download your results from s3 Once the process is done you can download the results from s3. ```python s3_uri_results = response_tmp_ft['dest_url'].item() tsfeatures.download_from_s3(s3_url=s3_uri_results) ``` ## ToDos - Optimizing writing and reading speed with Parquet files - Making temporal features available for different granularities - Fill zeros (For Data where 0 values are not reported, e.g. Retail Data) - Empirical benchmarking of model improvement - Nan Handling - Check data integrity before Upload - Informative error messages - Informative Status - Optional parameter y in calendar


نیازمندی

مقدار نام
- pip
- packaging
- pandas
- pyarrow
- python-dotenv
- requests
- s3fs
- boto3


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl fasttsfeatures-0.0.9:

    pip install fasttsfeatures-0.0.9.whl


نصب پکیج tar.gz fasttsfeatures-0.0.9:

    pip install fasttsfeatures-0.0.9.tar.gz