معرفی شرکت ها


fastsweep-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Eikonal solver using parallel fast sweeping
ویژگی مقدار
سیستم عامل -
نام فایل fastsweep-0.1.1
نام fastsweep
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Delio Vicini
ایمیل نویسنده delio.vicini@gmail.com
آدرس صفحه اصلی https://github.com/rgl-epfl/fastsweep
آدرس اینترنتی https://pypi.org/project/fastsweep/
مجوز BSD
# Fast sweeping SDF solver <p align="center"> <img src="https://raw.githubusercontent.com/rgl-epfl/fastsweep/main/redistancing.svg" width="70%" centering/> </p> This repository contains a Python package providing an efficient solver for the Eikonal equation in 3D. The primary use for this package is to *redistance* a signed distance function (SDF) from its zero level set (e.g., during an optimization that optimizes the SDF). In particular, this implementation was created for the use in our paper on [differentiable signed distance function rendering](http://rgl.epfl.ch/publications/Vicini2022SDF). You can find the code for that paper [here](https://github.com/rgl-epfl/differentiable-sdf-rendering.git). This library does **not** convert meshes to SDFs, even though it can be used for such applications. This implementation runs efficiently on GPUs (using CUDA) and also provides a CPU implementation as a fallback. The solver is exposed via Python bindings and uses [Dr.Jit](https://github.com/mitsuba-renderer/drjit) for some of its implementation. The code implements the parallel fast sweeping algorithm for the Eikonal equation: *A parallel fast sweeping method for the Eikonal equation. Miles Detrixhe, Frédéric Gibou, Chohong Min, Journal of Computational Physics 237 (2013)* The implementation is in part based on [PDFS](https://github.com/GEM3D/PDFS), see also `LICENSE` for license details. # Installation Pre-build binaries are provided on PyPi and can be installed using ```bash pip install fastsweep ``` Alternatively, the package is also relatively easy to build and install from source. The build setup uses CMake and [scikit build](https://scikit-build.readthedocs.io/en/latest/). Please clone the repository including submodules using ```bash git clone --recursive git@github.com:rgl-epfl/fastsweep.git ``` The Python module can then be built and installed by invoking: ```bash pip install ./fastsweep ``` **Important**: It is important that this solver and `drjit` are compiled with exactly the same compiler and settings for binary compatibility. If you installed a pre-built `drjit` package using `pip`, you most likely will want to use the pre-built package for `fastsweep` as well. Conversely, if you want to compile one of these packages locally, you will most likely need to compile the other one locally as well. If there is a problem with binary compatibility, invoking the functionality of the solver will most likely throw a type-mismatch error. # Usage The solver takes a Dr.Jit 3D `TensorXf` as input and solves the Eikonal equation from its zero level set. It returns a valid SDF that reproduces the zero level set of the input. The solver does not support 1D or 2D problems, for these one can for example use [scikit-fmm](https://pythonhosted.org/scikit-fmm/). Given an initial 3D tensor, the solver can be invoked as ```Python import fastsweep data = drjit.cuda.TensorXf(...) sdf = fastsweep.redistance(data) ``` The resulting array `sdf` is then a valid SDF. The solver returns either a `drjit.cuda.TensorXf` or `dfjit.llvm.TensorXf`, depending on the type of the input. A complete example script is provided [here](https://github.com/rgl-epfl/fastsweep/blob/main/python/example.py). # Limitations - The code currently assumes the SDF to be contained in the unit cube volume and hasn't been tested for non-uniform volumes or other scales. - The CPU version isn't very efficient, this code is primarily designed for GPU execution and the CPU version is really just a fallback. - The computation of the zero level set does not consider different grid interpolation modes. # Citation If you use this solver for an academic paper, consider citing the following paper: ```bibtex @article{Vicini2022sdf, title = {Differentiable Signed Distance Function Rendering}, author = {Delio Vicini and Sébastien Speierer and Wenzel Jakob}, year = 2022, month = jul, journal = {Transactions on Graphics (Proceedings of SIGGRAPH)}, volume = 41, number = 4, pages = {125:1--125:18}, doi = {10.1145/3528223.3530139} } ```


نیازمندی

مقدار نام
- drjit


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl fastsweep-0.1.1:

    pip install fastsweep-0.1.1.whl


نصب پکیج tar.gz fastsweep-0.1.1:

    pip install fastsweep-0.1.1.tar.gz