معرفی شرکت ها


fastrl-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

fastrl is a reinforcement learning library that extends Fastai. This project is not affiliated with fastai or Jeremy Howard.
ویژگی مقدار
سیستم عامل -
نام فایل fastrl-0.0.9
نام fastrl
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Josiah Laivins, and contributors
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/josiahls/fastrl/tree/main/
آدرس اینترنتی https://pypi.org/project/fastrl/
مجوز Apache Software License 2.0
fastrl ================ <!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! --> [![CI Status](https://github.com/josiahls/fastrl/workflows/Fastrl%20Testing/badge.svg)](https://github.com/josiahls/fastrl/actions?query=workflow%3A%22Fastrl+Testing%22) [![pypi fastrl version](https://img.shields.io/pypi/v/fastrl.svg)](https://pypi.python.org/pypi/fastrl) [![Docker Image Latest](https://img.shields.io/docker/v/josiahls/fastrl?label=Docker&sort=date.png)](https://hub.docker.com/repository/docker/josiahls/fastrl) [![Docker Image-Dev Latest](https://img.shields.io/docker/v/josiahls/fastrl-dev?label=Docker%20Dev&sort=date.png)](https://hub.docker.com/repository/docker/josiahls/fastrl-dev) [![fastrl python compatibility](https://img.shields.io/pypi/pyversions/fastrl.svg)](https://pypi.python.org/pypi/fastrl) [![fastrl license](https://img.shields.io/pypi/l/fastrl.svg)](https://pypi.python.org/pypi/fastrl) > Warning: This is in alpha, and so uses latest torch and torchdata, > very importantly torchdata. The base API, while at the point of > semi-stability, might be changed in future versions, and so there will > be no promises of backward compatiblity. For the time being, it is > best to hard-pin versions of the library. > Warning: Even before fastrl==2.0.0, all Models should converge > reasonably fast, however HRL models `DADS` and `DIAYN` will need > re-balancing and some extra features that the respective authors used. # Overview Fastai for computer vision and tabular learning has been amazing. One would wish that this would be the same for RL. The purpose of this repo is to have a framework that is as easy as possible to start, but also designed for testing new agents. This version fo fastrl is basically a wrapper around [torchdata](https://github.com/pytorch/data). It is built around 4 pipeline concepts (half is from fastai): - DataLoading/DataBlock pipelines - Agent pipelines - Learner pipelines - Logger plugins Documentation is being served at https://josiahls.github.io/fastrl/ from documentation directly generated via `nbdev` in this repo. Basic DQN example: ``` python from fastrl.loggers.core import * from fastrl.loggers.vscode_visualizers import * from fastrl.agents.dqn.basic import * from fastrl.agents.dqn.target import * from fastrl.data.block import * from fastrl.envs.gym import * import torch ``` ``` python # Setup Loggers logger_base = ProgressBarLogger(epoch_on_pipe=EpocherCollector, batch_on_pipe=BatchCollector) # Setup up the core NN torch.manual_seed(0) model = DQN(4,2) # Setup the Agent agent = DQNAgent(model,[logger_base],max_steps=10000) # Setup the DataBlock block = DataBlock( GymTransformBlock(agent=agent,nsteps=2,nskips=2,firstlast=True), # We basically merge 2 steps into 1 and skip. (GymTransformBlock(agent=agent,nsteps=2,nskips=2,firstlast=True,n=100,include_images=True),VSCodeTransformBlock()) ) dls = L(block.dataloaders(['CartPole-v1']*1)) # Setup the Learner learner = DQNLearner(model,dls,logger_bases=[logger_base],bs=128,max_sz=20_000,nsteps=2,lr=0.001, batches=1000, dp_augmentation_fns=[ # Plugin TargetDQN code TargetModelUpdater.insert_dp(), TargetModelQCalc.replace_dp() ]) learner.fit(10) #learner.validate() ``` # Whats new? As we have learned how to support as many RL agents as possible, we found that `fastrl==1.*` was vastly limited in the models that it can support. `fastrl==2.*` will leverage the `nbdev` library for better documentation and more relevant testing, and `torchdata` is the base lib. We also will be building on the work of the `ptan`<sup>1</sup> library as a close reference for pytorch based reinforcement learning APIs. <sup>1</sup> “Shmuma/Ptan”. Github, 2020, https://github.com/Shmuma/ptan. Accessed 13 June 2020. ## Install ## PyPI Below will install the alpha build of fastrl. **Cuda Install** `pip install fastrl==0.0.* --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu113` **Cpu Install** `pip install fastrl==0.0.* --pre --extra-index-url https://download.pytorch.org/whl/nightly/cpu` ## Docker (highly recommend) Install: [Nvidia-Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker) Install: [docker-compose](https://docs.docker.com/compose/install/) ``` bash docker-compose pull && docker-compose up ``` ## Contributing After you clone this repository, please run `nbdev_install_hooks` in your terminal. This sets up git hooks, which clean up the notebooks to remove the extraneous stuff stored in the notebooks (e.g. which cells you ran) which causes unnecessary merge conflicts. Before submitting a PR, check that the local library and notebooks match. The script `nbdev_clean` can let you know if there is a difference between the local library and the notebooks. \* If you made a change to the notebooks in one of the exported cells, you can export it to the library with `nbdev_build_lib` or `make fastai2`. \* If you made a change to the library, you can export it back to the notebooks with `nbdev_update_lib`.


نیازمندی

مقدار نام
- pip
- packaging
>=1.13.0.dev20220826+cu113 torch
>=0.5.0.dev20220826 torchdata
>=0.26.1 gym
- pyopengl
- pyglet
- tensorboard
- pygame
- pandas
- scipy
- sklearn
- fastcore
- fastprogress
<5.*,>=4.2.0 nbformat
>=0.26.1 gym[all]
- jupyterlab
>=2.3.* nbdev
- pre-commit
- ipywidgets
- moviepy
- pygifsicle
- aquirdturtle-collapsible-headings
- plotly
- matplotlib-inline
- wheel
- twine
- fastdownload
- watchdog[watchmedo]
- graphviz
==4.1.1 typing-extensions
<4 spacy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl fastrl-0.0.9:

    pip install fastrl-0.0.9.whl


نصب پکیج tar.gz fastrl-0.0.9:

    pip install fastrl-0.0.9.tar.gz